Cargando…
Radiomics Features Predict CIC Mutation Status in Lower Grade Glioma
MRI in combination with genomic markers are critical in the management of gliomas. Radiomics and radiogenomics analysis facilitate the quantitative assessment of tumor properties which can be used to model both molecular subtype and predict disease progression. In this work, we report on the Drosoph...
Autores principales: | Zhang, Luyuan, Giuste, Felipe, Vizcarra, Juan C., Li, Xuejun, Gutman, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333647/ https://www.ncbi.nlm.nih.gov/pubmed/32676453 http://dx.doi.org/10.3389/fonc.2020.00937 |
Ejemplares similares
-
The combination of radiomics features and VASARI standard to predict glioma grade
por: You, Wei, et al.
Publicado: (2023) -
Radiomics and Qualitative Features From Multiparametric MRI Predict Molecular Subtypes in Patients With Lower-Grade Glioma
por: Sun, Chen, et al.
Publicado: (2022) -
IDH mutation-specific radiomic signature in lower-grade gliomas
por: Liu, Xing, et al.
Publicado: (2019) -
Preoperative Radiomics Analysis of 1p/19q Status in WHO Grade II Gliomas
por: Fan, Ziwen, et al.
Publicado: (2021) -
Radiomics Features Predict Telomerase Reverse Transcriptase Promoter Mutations in World Health Organization Grade II Gliomas via a Machine-Learning Approach
por: Fang, Shengyu, et al.
Publicado: (2021)