Cargando…
An integrative histopathologic clustering model based on immuno‐matrix elements to predict the risk of death in malignant mesothelioma
OBJECTIVE: Previous studies have reported a close relationship between malignant mesothelioma (MM) and the immune matricial microenvironment (IMM). One of the major problems in these studies is the lack of adequate adjustment for potential confounders. Therefore, the aim of this study was to identif...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333849/ https://www.ncbi.nlm.nih.gov/pubmed/32391978 http://dx.doi.org/10.1002/cam4.3111 |
_version_ | 1783553831990198272 |
---|---|
author | Balancin, Marcelo Luiz Teodoro, Walcy Rosolia Farhat, Cecilia de Miranda, Tomas Jurandir Assato, Aline Kawassaki de Souza Silva, Neila Aparecida Velosa, Ana Paula Falzoni, Roberto Ab'Saber, Alexandre Muxfeldt Roden, Anja C. Capelozzi, Vera Luiza |
author_facet | Balancin, Marcelo Luiz Teodoro, Walcy Rosolia Farhat, Cecilia de Miranda, Tomas Jurandir Assato, Aline Kawassaki de Souza Silva, Neila Aparecida Velosa, Ana Paula Falzoni, Roberto Ab'Saber, Alexandre Muxfeldt Roden, Anja C. Capelozzi, Vera Luiza |
author_sort | Balancin, Marcelo Luiz |
collection | PubMed |
description | OBJECTIVE: Previous studies have reported a close relationship between malignant mesothelioma (MM) and the immune matricial microenvironment (IMM). One of the major problems in these studies is the lack of adequate adjustment for potential confounders. Therefore, the aim of this study was to identify and quantify risk factors such as IMM and various tumor characteristics and their association with the subtype of MM and survival. METHODS: We examined IMM and other tumor markers in tumor tissues from 82 patients with MM. These markers were evaluated by histochemistry, immunohistochemistry, immunofluorescence, and morphometry. Logistic regression analysis, cluster analysis, and Cox regression analysis were performed. RESULTS: Hierarchical cluster analysis revealed two clusters of MM that were independent of clinicopathologic features. The high‐risk cluster included MM with high tumor cellularity, high type V collagen (Col V) fiber density, and low CD8(+) T lymphocyte density in the IMM. Our results showed that the risk of death was increased for patients with MM with high tumor cellularity (OR = 1.63, 95% CI = 1.29‐2.89, P = .02), overexpression of Col V (OR = 2.60, 95% CI = 0.98‐6.84, P = .04), and decreased CD8 T lymphocytes (OR = 1.001, 95% CI = 0.995‐1.007, P = .008). The hazard ratio for the high‐risk cluster was 2.19 (95% CI = 0.54‐3.03, P < .01) for mortality from MM at 40 months. CONCLUSION: Morphometric analysis of Col V, CD8(+) T lymphocytes, and tumor cellularity can be used to identify patients with high risk of death from MM. |
format | Online Article Text |
id | pubmed-7333849 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73338492020-07-07 An integrative histopathologic clustering model based on immuno‐matrix elements to predict the risk of death in malignant mesothelioma Balancin, Marcelo Luiz Teodoro, Walcy Rosolia Farhat, Cecilia de Miranda, Tomas Jurandir Assato, Aline Kawassaki de Souza Silva, Neila Aparecida Velosa, Ana Paula Falzoni, Roberto Ab'Saber, Alexandre Muxfeldt Roden, Anja C. Capelozzi, Vera Luiza Cancer Med Cancer Prevention OBJECTIVE: Previous studies have reported a close relationship between malignant mesothelioma (MM) and the immune matricial microenvironment (IMM). One of the major problems in these studies is the lack of adequate adjustment for potential confounders. Therefore, the aim of this study was to identify and quantify risk factors such as IMM and various tumor characteristics and their association with the subtype of MM and survival. METHODS: We examined IMM and other tumor markers in tumor tissues from 82 patients with MM. These markers were evaluated by histochemistry, immunohistochemistry, immunofluorescence, and morphometry. Logistic regression analysis, cluster analysis, and Cox regression analysis were performed. RESULTS: Hierarchical cluster analysis revealed two clusters of MM that were independent of clinicopathologic features. The high‐risk cluster included MM with high tumor cellularity, high type V collagen (Col V) fiber density, and low CD8(+) T lymphocyte density in the IMM. Our results showed that the risk of death was increased for patients with MM with high tumor cellularity (OR = 1.63, 95% CI = 1.29‐2.89, P = .02), overexpression of Col V (OR = 2.60, 95% CI = 0.98‐6.84, P = .04), and decreased CD8 T lymphocytes (OR = 1.001, 95% CI = 0.995‐1.007, P = .008). The hazard ratio for the high‐risk cluster was 2.19 (95% CI = 0.54‐3.03, P < .01) for mortality from MM at 40 months. CONCLUSION: Morphometric analysis of Col V, CD8(+) T lymphocytes, and tumor cellularity can be used to identify patients with high risk of death from MM. John Wiley and Sons Inc. 2020-05-11 /pmc/articles/PMC7333849/ /pubmed/32391978 http://dx.doi.org/10.1002/cam4.3111 Text en © 2020 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Cancer Prevention Balancin, Marcelo Luiz Teodoro, Walcy Rosolia Farhat, Cecilia de Miranda, Tomas Jurandir Assato, Aline Kawassaki de Souza Silva, Neila Aparecida Velosa, Ana Paula Falzoni, Roberto Ab'Saber, Alexandre Muxfeldt Roden, Anja C. Capelozzi, Vera Luiza An integrative histopathologic clustering model based on immuno‐matrix elements to predict the risk of death in malignant mesothelioma |
title | An integrative histopathologic clustering model based on immuno‐matrix elements to predict the risk of death in malignant mesothelioma |
title_full | An integrative histopathologic clustering model based on immuno‐matrix elements to predict the risk of death in malignant mesothelioma |
title_fullStr | An integrative histopathologic clustering model based on immuno‐matrix elements to predict the risk of death in malignant mesothelioma |
title_full_unstemmed | An integrative histopathologic clustering model based on immuno‐matrix elements to predict the risk of death in malignant mesothelioma |
title_short | An integrative histopathologic clustering model based on immuno‐matrix elements to predict the risk of death in malignant mesothelioma |
title_sort | integrative histopathologic clustering model based on immuno‐matrix elements to predict the risk of death in malignant mesothelioma |
topic | Cancer Prevention |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333849/ https://www.ncbi.nlm.nih.gov/pubmed/32391978 http://dx.doi.org/10.1002/cam4.3111 |
work_keys_str_mv | AT balancinmarceloluiz anintegrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT teodorowalcyrosolia anintegrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT farhatcecilia anintegrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT demirandatomasjurandir anintegrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT assatoalinekawassaki anintegrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT desouzasilvaneilaaparecida anintegrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT velosaanapaula anintegrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT falzoniroberto anintegrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT absaberalexandremuxfeldt anintegrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT rodenanjac anintegrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT capelozziveraluiza anintegrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT balancinmarceloluiz integrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT teodorowalcyrosolia integrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT farhatcecilia integrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT demirandatomasjurandir integrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT assatoalinekawassaki integrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT desouzasilvaneilaaparecida integrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT velosaanapaula integrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT falzoniroberto integrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT absaberalexandremuxfeldt integrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT rodenanjac integrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma AT capelozziveraluiza integrativehistopathologicclusteringmodelbasedonimmunomatrixelementstopredicttheriskofdeathinmalignantmesothelioma |