Cargando…

Mechanistic Causes of Reduced Cardiorespiratory Fitness in Type 2 Diabetes

Type 2 diabetes (T2D) has been rising in prevalence in the United States and worldwide over the past few decades and contributes to significant morbidity and premature mortality, primarily due to cardiovascular disease (CVD). Cardiorespiratory fitness (CRF) is a modifiable cardiovascular (CV) risk f...

Descripción completa

Detalles Bibliográficos
Autores principales: Abushamat, Layla A, McClatchey, P Mason, Scalzo, Rebecca L, Schauer, Irene, Huebschmann, Amy G, Nadeau, Kristen J, Liu, Zhenqi, Regensteiner, Judith G, Reusch, Jane E B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334033/
https://www.ncbi.nlm.nih.gov/pubmed/32666009
http://dx.doi.org/10.1210/jendso/bvaa063
Descripción
Sumario:Type 2 diabetes (T2D) has been rising in prevalence in the United States and worldwide over the past few decades and contributes to significant morbidity and premature mortality, primarily due to cardiovascular disease (CVD). Cardiorespiratory fitness (CRF) is a modifiable cardiovascular (CV) risk factor in the general population and in people with T2D. Young people and adults with T2D have reduced CRF when compared with their peers without T2D who are similarly active and of similar body mass index. Furthermore, the impairment in CRF conferred by T2D is greater in women than in men. Various factors may contribute to this abnormality in people with T2D, including insulin resistance and mitochondrial, vascular, and cardiac dysfunction. As proof of concept that understanding the mediators of impaired CRF in T2D can inform intervention, we previously demonstrated that an insulin sensitizer improved CRF in adults with T2D. This review focuses on how contributing factors influence CRF and why they may be compromised in T2D. Functional exercise capacity is a measure of interrelated systems biology; as such, the contribution of derangement in each of these factors to T2D-mediated impairment in CRF is complex and varied. Therefore, successful approaches to improve CRF in T2D should be multifaceted and individually designed. The current status of this research and future directions are outlined.