Cargando…
Robust Neural Automated Essay Scoring Using Item Response Theory
Automated essay scoring (AES) is the task of automatically assigning scores to essays as an alternative to human grading. Conventional AES methods typically rely on manually tuned features, which are laborious to effectively develop. To obviate the need for feature engineering, many deep neural netw...
Autores principales: | Uto, Masaki, Okano, Masashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334153/ http://dx.doi.org/10.1007/978-3-030-52237-7_44 |
Ejemplares similares
-
Automated Short-Answer Grading Using Deep Neural Networks and Item Response Theory
por: Uto, Masaki, et al.
Publicado: (2020) -
Essays on item response theory
por: Boomsma, Anne, et al.
Publicado: (2001) -
Empirical comparison of item response theory models with rater's parameters
por: Uto, Masaki, et al.
Publicado: (2018) -
Allostatic load scoring using item response theory
por: Liu, Shelley H., et al.
Publicado: (2020) -
Improving Automated Essay Scoring by Prompt Prediction and Matching
por: Sun, Jingbo, et al.
Publicado: (2022)