Cargando…

Rapid growth of new atmospheric particles by nitric acid and ammonia condensation

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Mingyi, Kong, Weimeng, Marten, Ruby, He, Xu-Cheng, Chen, Dexian, Pfeifer, Joschka, Heitto, Arto, Kontkanen, Jenni, Dada, Lubna, Kürten, Andreas, Yli-Juuti, Taina, Manninen, Hanna E., Amanatidis, Stavros, Amorim, António, Baalbaki, Rima, Baccarini, Andrea, Bell, David M., Bertozzi, Barbara, Bräkling, Steffen, Brilke, Sophia, Murillo, Lucía Caudillo, Chiu, Randall, Chu, Biwu, De Menezes, Louis-Philippe, Duplissy, Jonathan, Finkenzeller, Henning, Carracedo, Loic Gonzalez, Granzin, Manuel, Guida, Roberto, Hansel, Armin, Hofbauer, Victoria, Krechmer, Jordan, Lehtipalo, Katrianne, Lamkaddam, Houssni, Lampimäki, Markus, Lee, Chuan Ping, Makhmutov, Vladimir, Marie, Guillaume, Mathot, Serge, Mauldin, Roy L., Mentler, Bernhard, Müller, Tatjana, Onnela, Antti, Partoll, Eva, Petäjä, Tuukka, Philippov, Maxim, Pospisilova, Veronika, Ranjithkumar, Ananth, Rissanen, Matti, Rörup, Birte, Scholz, Wiebke, Shen, Jiali, Simon, Mario, Sipilä, Mikko, Steiner, Gerhard, Stolzenburg, Dominik, Tham, Yee Jun, Tomé, António, Wagner, Andrea C., Wang, Dongyu S., Wang, Yonghong, Weber, Stefan K., Winkler, Paul M., Wlasits, Peter J., Wu, Yusheng, Xiao, Mao, Ye, Qing, Zauner-Wieczorek, Marcel, Zhou, Xueqin, Volkamer, Rainer, Riipinen, Ilona, Dommen, Josef, Curtius, Joachim, Baltensperger, Urs, Kulmala, Markku, Worsnop, Douglas R., Kirkby, Jasper, Seinfeld, John H., El-Haddad, Imad, Flagan, Richard C., Donahue, Neil M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334196/
https://www.ncbi.nlm.nih.gov/pubmed/32405020
http://dx.doi.org/10.1038/s41586-020-2270-4
_version_ 1783553886671339520
author Wang, Mingyi
Kong, Weimeng
Marten, Ruby
He, Xu-Cheng
Chen, Dexian
Pfeifer, Joschka
Heitto, Arto
Kontkanen, Jenni
Dada, Lubna
Kürten, Andreas
Yli-Juuti, Taina
Manninen, Hanna E.
Amanatidis, Stavros
Amorim, António
Baalbaki, Rima
Baccarini, Andrea
Bell, David M.
Bertozzi, Barbara
Bräkling, Steffen
Brilke, Sophia
Murillo, Lucía Caudillo
Chiu, Randall
Chu, Biwu
De Menezes, Louis-Philippe
Duplissy, Jonathan
Finkenzeller, Henning
Carracedo, Loic Gonzalez
Granzin, Manuel
Guida, Roberto
Hansel, Armin
Hofbauer, Victoria
Krechmer, Jordan
Lehtipalo, Katrianne
Lamkaddam, Houssni
Lampimäki, Markus
Lee, Chuan Ping
Makhmutov, Vladimir
Marie, Guillaume
Mathot, Serge
Mauldin, Roy L.
Mentler, Bernhard
Müller, Tatjana
Onnela, Antti
Partoll, Eva
Petäjä, Tuukka
Philippov, Maxim
Pospisilova, Veronika
Ranjithkumar, Ananth
Rissanen, Matti
Rörup, Birte
Scholz, Wiebke
Shen, Jiali
Simon, Mario
Sipilä, Mikko
Steiner, Gerhard
Stolzenburg, Dominik
Tham, Yee Jun
Tomé, António
Wagner, Andrea C.
Wang, Dongyu S.
Wang, Yonghong
Weber, Stefan K.
Winkler, Paul M.
Wlasits, Peter J.
Wu, Yusheng
Xiao, Mao
Ye, Qing
Zauner-Wieczorek, Marcel
Zhou, Xueqin
Volkamer, Rainer
Riipinen, Ilona
Dommen, Josef
Curtius, Joachim
Baltensperger, Urs
Kulmala, Markku
Worsnop, Douglas R.
Kirkby, Jasper
Seinfeld, John H.
El-Haddad, Imad
Flagan, Richard C.
Donahue, Neil M.
author_facet Wang, Mingyi
Kong, Weimeng
Marten, Ruby
He, Xu-Cheng
Chen, Dexian
Pfeifer, Joschka
Heitto, Arto
Kontkanen, Jenni
Dada, Lubna
Kürten, Andreas
Yli-Juuti, Taina
Manninen, Hanna E.
Amanatidis, Stavros
Amorim, António
Baalbaki, Rima
Baccarini, Andrea
Bell, David M.
Bertozzi, Barbara
Bräkling, Steffen
Brilke, Sophia
Murillo, Lucía Caudillo
Chiu, Randall
Chu, Biwu
De Menezes, Louis-Philippe
Duplissy, Jonathan
Finkenzeller, Henning
Carracedo, Loic Gonzalez
Granzin, Manuel
Guida, Roberto
Hansel, Armin
Hofbauer, Victoria
Krechmer, Jordan
Lehtipalo, Katrianne
Lamkaddam, Houssni
Lampimäki, Markus
Lee, Chuan Ping
Makhmutov, Vladimir
Marie, Guillaume
Mathot, Serge
Mauldin, Roy L.
Mentler, Bernhard
Müller, Tatjana
Onnela, Antti
Partoll, Eva
Petäjä, Tuukka
Philippov, Maxim
Pospisilova, Veronika
Ranjithkumar, Ananth
Rissanen, Matti
Rörup, Birte
Scholz, Wiebke
Shen, Jiali
Simon, Mario
Sipilä, Mikko
Steiner, Gerhard
Stolzenburg, Dominik
Tham, Yee Jun
Tomé, António
Wagner, Andrea C.
Wang, Dongyu S.
Wang, Yonghong
Weber, Stefan K.
Winkler, Paul M.
Wlasits, Peter J.
Wu, Yusheng
Xiao, Mao
Ye, Qing
Zauner-Wieczorek, Marcel
Zhou, Xueqin
Volkamer, Rainer
Riipinen, Ilona
Dommen, Josef
Curtius, Joachim
Baltensperger, Urs
Kulmala, Markku
Worsnop, Douglas R.
Kirkby, Jasper
Seinfeld, John H.
El-Haddad, Imad
Flagan, Richard C.
Donahue, Neil M.
author_sort Wang, Mingyi
collection PubMed
description A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5).
format Online
Article
Text
id pubmed-7334196
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-73341962020-07-15 Rapid growth of new atmospheric particles by nitric acid and ammonia condensation Wang, Mingyi Kong, Weimeng Marten, Ruby He, Xu-Cheng Chen, Dexian Pfeifer, Joschka Heitto, Arto Kontkanen, Jenni Dada, Lubna Kürten, Andreas Yli-Juuti, Taina Manninen, Hanna E. Amanatidis, Stavros Amorim, António Baalbaki, Rima Baccarini, Andrea Bell, David M. Bertozzi, Barbara Bräkling, Steffen Brilke, Sophia Murillo, Lucía Caudillo Chiu, Randall Chu, Biwu De Menezes, Louis-Philippe Duplissy, Jonathan Finkenzeller, Henning Carracedo, Loic Gonzalez Granzin, Manuel Guida, Roberto Hansel, Armin Hofbauer, Victoria Krechmer, Jordan Lehtipalo, Katrianne Lamkaddam, Houssni Lampimäki, Markus Lee, Chuan Ping Makhmutov, Vladimir Marie, Guillaume Mathot, Serge Mauldin, Roy L. Mentler, Bernhard Müller, Tatjana Onnela, Antti Partoll, Eva Petäjä, Tuukka Philippov, Maxim Pospisilova, Veronika Ranjithkumar, Ananth Rissanen, Matti Rörup, Birte Scholz, Wiebke Shen, Jiali Simon, Mario Sipilä, Mikko Steiner, Gerhard Stolzenburg, Dominik Tham, Yee Jun Tomé, António Wagner, Andrea C. Wang, Dongyu S. Wang, Yonghong Weber, Stefan K. Winkler, Paul M. Wlasits, Peter J. Wu, Yusheng Xiao, Mao Ye, Qing Zauner-Wieczorek, Marcel Zhou, Xueqin Volkamer, Rainer Riipinen, Ilona Dommen, Josef Curtius, Joachim Baltensperger, Urs Kulmala, Markku Worsnop, Douglas R. Kirkby, Jasper Seinfeld, John H. El-Haddad, Imad Flagan, Richard C. Donahue, Neil M. Nature Article A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5). Nature Publishing Group UK 2020-05-13 2020 /pmc/articles/PMC7334196/ /pubmed/32405020 http://dx.doi.org/10.1038/s41586-020-2270-4 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Wang, Mingyi
Kong, Weimeng
Marten, Ruby
He, Xu-Cheng
Chen, Dexian
Pfeifer, Joschka
Heitto, Arto
Kontkanen, Jenni
Dada, Lubna
Kürten, Andreas
Yli-Juuti, Taina
Manninen, Hanna E.
Amanatidis, Stavros
Amorim, António
Baalbaki, Rima
Baccarini, Andrea
Bell, David M.
Bertozzi, Barbara
Bräkling, Steffen
Brilke, Sophia
Murillo, Lucía Caudillo
Chiu, Randall
Chu, Biwu
De Menezes, Louis-Philippe
Duplissy, Jonathan
Finkenzeller, Henning
Carracedo, Loic Gonzalez
Granzin, Manuel
Guida, Roberto
Hansel, Armin
Hofbauer, Victoria
Krechmer, Jordan
Lehtipalo, Katrianne
Lamkaddam, Houssni
Lampimäki, Markus
Lee, Chuan Ping
Makhmutov, Vladimir
Marie, Guillaume
Mathot, Serge
Mauldin, Roy L.
Mentler, Bernhard
Müller, Tatjana
Onnela, Antti
Partoll, Eva
Petäjä, Tuukka
Philippov, Maxim
Pospisilova, Veronika
Ranjithkumar, Ananth
Rissanen, Matti
Rörup, Birte
Scholz, Wiebke
Shen, Jiali
Simon, Mario
Sipilä, Mikko
Steiner, Gerhard
Stolzenburg, Dominik
Tham, Yee Jun
Tomé, António
Wagner, Andrea C.
Wang, Dongyu S.
Wang, Yonghong
Weber, Stefan K.
Winkler, Paul M.
Wlasits, Peter J.
Wu, Yusheng
Xiao, Mao
Ye, Qing
Zauner-Wieczorek, Marcel
Zhou, Xueqin
Volkamer, Rainer
Riipinen, Ilona
Dommen, Josef
Curtius, Joachim
Baltensperger, Urs
Kulmala, Markku
Worsnop, Douglas R.
Kirkby, Jasper
Seinfeld, John H.
El-Haddad, Imad
Flagan, Richard C.
Donahue, Neil M.
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
title Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
title_full Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
title_fullStr Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
title_full_unstemmed Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
title_short Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
title_sort rapid growth of new atmospheric particles by nitric acid and ammonia condensation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334196/
https://www.ncbi.nlm.nih.gov/pubmed/32405020
http://dx.doi.org/10.1038/s41586-020-2270-4
work_keys_str_mv AT wangmingyi rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT kongweimeng rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT martenruby rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT hexucheng rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT chendexian rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT pfeiferjoschka rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT heittoarto rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT kontkanenjenni rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT dadalubna rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT kurtenandreas rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT ylijuutitaina rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT manninenhannae rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT amanatidisstavros rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT amorimantonio rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT baalbakirima rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT baccariniandrea rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT belldavidm rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT bertozzibarbara rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT braklingsteffen rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT brilkesophia rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT murilloluciacaudillo rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT chiurandall rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT chubiwu rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT demenezeslouisphilippe rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT duplissyjonathan rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT finkenzellerhenning rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT carracedoloicgonzalez rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT granzinmanuel rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT guidaroberto rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT hanselarmin rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT hofbauervictoria rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT krechmerjordan rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT lehtipalokatrianne rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT lamkaddamhoussni rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT lampimakimarkus rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT leechuanping rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT makhmutovvladimir rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT marieguillaume rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT mathotserge rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT mauldinroyl rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT mentlerbernhard rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT mullertatjana rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT onnelaantti rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT partolleva rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT petajatuukka rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT philippovmaxim rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT pospisilovaveronika rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT ranjithkumarananth rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT rissanenmatti rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT rorupbirte rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT scholzwiebke rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT shenjiali rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT simonmario rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT sipilamikko rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT steinergerhard rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT stolzenburgdominik rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT thamyeejun rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT tomeantonio rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT wagnerandreac rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT wangdongyus rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT wangyonghong rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT weberstefank rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT winklerpaulm rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT wlasitspeterj rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT wuyusheng rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT xiaomao rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT yeqing rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT zaunerwieczorekmarcel rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT zhouxueqin rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT volkamerrainer rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT riipinenilona rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT dommenjosef rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT curtiusjoachim rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT baltenspergerurs rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT kulmalamarkku rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT worsnopdouglasr rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT kirkbyjasper rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT seinfeldjohnh rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT elhaddadimad rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT flaganrichardc rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation
AT donahueneilm rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation