Cargando…
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334196/ https://www.ncbi.nlm.nih.gov/pubmed/32405020 http://dx.doi.org/10.1038/s41586-020-2270-4 |
_version_ | 1783553886671339520 |
---|---|
author | Wang, Mingyi Kong, Weimeng Marten, Ruby He, Xu-Cheng Chen, Dexian Pfeifer, Joschka Heitto, Arto Kontkanen, Jenni Dada, Lubna Kürten, Andreas Yli-Juuti, Taina Manninen, Hanna E. Amanatidis, Stavros Amorim, António Baalbaki, Rima Baccarini, Andrea Bell, David M. Bertozzi, Barbara Bräkling, Steffen Brilke, Sophia Murillo, Lucía Caudillo Chiu, Randall Chu, Biwu De Menezes, Louis-Philippe Duplissy, Jonathan Finkenzeller, Henning Carracedo, Loic Gonzalez Granzin, Manuel Guida, Roberto Hansel, Armin Hofbauer, Victoria Krechmer, Jordan Lehtipalo, Katrianne Lamkaddam, Houssni Lampimäki, Markus Lee, Chuan Ping Makhmutov, Vladimir Marie, Guillaume Mathot, Serge Mauldin, Roy L. Mentler, Bernhard Müller, Tatjana Onnela, Antti Partoll, Eva Petäjä, Tuukka Philippov, Maxim Pospisilova, Veronika Ranjithkumar, Ananth Rissanen, Matti Rörup, Birte Scholz, Wiebke Shen, Jiali Simon, Mario Sipilä, Mikko Steiner, Gerhard Stolzenburg, Dominik Tham, Yee Jun Tomé, António Wagner, Andrea C. Wang, Dongyu S. Wang, Yonghong Weber, Stefan K. Winkler, Paul M. Wlasits, Peter J. Wu, Yusheng Xiao, Mao Ye, Qing Zauner-Wieczorek, Marcel Zhou, Xueqin Volkamer, Rainer Riipinen, Ilona Dommen, Josef Curtius, Joachim Baltensperger, Urs Kulmala, Markku Worsnop, Douglas R. Kirkby, Jasper Seinfeld, John H. El-Haddad, Imad Flagan, Richard C. Donahue, Neil M. |
author_facet | Wang, Mingyi Kong, Weimeng Marten, Ruby He, Xu-Cheng Chen, Dexian Pfeifer, Joschka Heitto, Arto Kontkanen, Jenni Dada, Lubna Kürten, Andreas Yli-Juuti, Taina Manninen, Hanna E. Amanatidis, Stavros Amorim, António Baalbaki, Rima Baccarini, Andrea Bell, David M. Bertozzi, Barbara Bräkling, Steffen Brilke, Sophia Murillo, Lucía Caudillo Chiu, Randall Chu, Biwu De Menezes, Louis-Philippe Duplissy, Jonathan Finkenzeller, Henning Carracedo, Loic Gonzalez Granzin, Manuel Guida, Roberto Hansel, Armin Hofbauer, Victoria Krechmer, Jordan Lehtipalo, Katrianne Lamkaddam, Houssni Lampimäki, Markus Lee, Chuan Ping Makhmutov, Vladimir Marie, Guillaume Mathot, Serge Mauldin, Roy L. Mentler, Bernhard Müller, Tatjana Onnela, Antti Partoll, Eva Petäjä, Tuukka Philippov, Maxim Pospisilova, Veronika Ranjithkumar, Ananth Rissanen, Matti Rörup, Birte Scholz, Wiebke Shen, Jiali Simon, Mario Sipilä, Mikko Steiner, Gerhard Stolzenburg, Dominik Tham, Yee Jun Tomé, António Wagner, Andrea C. Wang, Dongyu S. Wang, Yonghong Weber, Stefan K. Winkler, Paul M. Wlasits, Peter J. Wu, Yusheng Xiao, Mao Ye, Qing Zauner-Wieczorek, Marcel Zhou, Xueqin Volkamer, Rainer Riipinen, Ilona Dommen, Josef Curtius, Joachim Baltensperger, Urs Kulmala, Markku Worsnop, Douglas R. Kirkby, Jasper Seinfeld, John H. El-Haddad, Imad Flagan, Richard C. Donahue, Neil M. |
author_sort | Wang, Mingyi |
collection | PubMed |
description | A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5). |
format | Online Article Text |
id | pubmed-7334196 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-73341962020-07-15 Rapid growth of new atmospheric particles by nitric acid and ammonia condensation Wang, Mingyi Kong, Weimeng Marten, Ruby He, Xu-Cheng Chen, Dexian Pfeifer, Joschka Heitto, Arto Kontkanen, Jenni Dada, Lubna Kürten, Andreas Yli-Juuti, Taina Manninen, Hanna E. Amanatidis, Stavros Amorim, António Baalbaki, Rima Baccarini, Andrea Bell, David M. Bertozzi, Barbara Bräkling, Steffen Brilke, Sophia Murillo, Lucía Caudillo Chiu, Randall Chu, Biwu De Menezes, Louis-Philippe Duplissy, Jonathan Finkenzeller, Henning Carracedo, Loic Gonzalez Granzin, Manuel Guida, Roberto Hansel, Armin Hofbauer, Victoria Krechmer, Jordan Lehtipalo, Katrianne Lamkaddam, Houssni Lampimäki, Markus Lee, Chuan Ping Makhmutov, Vladimir Marie, Guillaume Mathot, Serge Mauldin, Roy L. Mentler, Bernhard Müller, Tatjana Onnela, Antti Partoll, Eva Petäjä, Tuukka Philippov, Maxim Pospisilova, Veronika Ranjithkumar, Ananth Rissanen, Matti Rörup, Birte Scholz, Wiebke Shen, Jiali Simon, Mario Sipilä, Mikko Steiner, Gerhard Stolzenburg, Dominik Tham, Yee Jun Tomé, António Wagner, Andrea C. Wang, Dongyu S. Wang, Yonghong Weber, Stefan K. Winkler, Paul M. Wlasits, Peter J. Wu, Yusheng Xiao, Mao Ye, Qing Zauner-Wieczorek, Marcel Zhou, Xueqin Volkamer, Rainer Riipinen, Ilona Dommen, Josef Curtius, Joachim Baltensperger, Urs Kulmala, Markku Worsnop, Douglas R. Kirkby, Jasper Seinfeld, John H. El-Haddad, Imad Flagan, Richard C. Donahue, Neil M. Nature Article A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5). Nature Publishing Group UK 2020-05-13 2020 /pmc/articles/PMC7334196/ /pubmed/32405020 http://dx.doi.org/10.1038/s41586-020-2270-4 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Wang, Mingyi Kong, Weimeng Marten, Ruby He, Xu-Cheng Chen, Dexian Pfeifer, Joschka Heitto, Arto Kontkanen, Jenni Dada, Lubna Kürten, Andreas Yli-Juuti, Taina Manninen, Hanna E. Amanatidis, Stavros Amorim, António Baalbaki, Rima Baccarini, Andrea Bell, David M. Bertozzi, Barbara Bräkling, Steffen Brilke, Sophia Murillo, Lucía Caudillo Chiu, Randall Chu, Biwu De Menezes, Louis-Philippe Duplissy, Jonathan Finkenzeller, Henning Carracedo, Loic Gonzalez Granzin, Manuel Guida, Roberto Hansel, Armin Hofbauer, Victoria Krechmer, Jordan Lehtipalo, Katrianne Lamkaddam, Houssni Lampimäki, Markus Lee, Chuan Ping Makhmutov, Vladimir Marie, Guillaume Mathot, Serge Mauldin, Roy L. Mentler, Bernhard Müller, Tatjana Onnela, Antti Partoll, Eva Petäjä, Tuukka Philippov, Maxim Pospisilova, Veronika Ranjithkumar, Ananth Rissanen, Matti Rörup, Birte Scholz, Wiebke Shen, Jiali Simon, Mario Sipilä, Mikko Steiner, Gerhard Stolzenburg, Dominik Tham, Yee Jun Tomé, António Wagner, Andrea C. Wang, Dongyu S. Wang, Yonghong Weber, Stefan K. Winkler, Paul M. Wlasits, Peter J. Wu, Yusheng Xiao, Mao Ye, Qing Zauner-Wieczorek, Marcel Zhou, Xueqin Volkamer, Rainer Riipinen, Ilona Dommen, Josef Curtius, Joachim Baltensperger, Urs Kulmala, Markku Worsnop, Douglas R. Kirkby, Jasper Seinfeld, John H. El-Haddad, Imad Flagan, Richard C. Donahue, Neil M. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation |
title | Rapid growth of new atmospheric particles by nitric acid and ammonia condensation |
title_full | Rapid growth of new atmospheric particles by nitric acid and ammonia condensation |
title_fullStr | Rapid growth of new atmospheric particles by nitric acid and ammonia condensation |
title_full_unstemmed | Rapid growth of new atmospheric particles by nitric acid and ammonia condensation |
title_short | Rapid growth of new atmospheric particles by nitric acid and ammonia condensation |
title_sort | rapid growth of new atmospheric particles by nitric acid and ammonia condensation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334196/ https://www.ncbi.nlm.nih.gov/pubmed/32405020 http://dx.doi.org/10.1038/s41586-020-2270-4 |
work_keys_str_mv | AT wangmingyi rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT kongweimeng rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT martenruby rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT hexucheng rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT chendexian rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT pfeiferjoschka rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT heittoarto rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT kontkanenjenni rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT dadalubna rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT kurtenandreas rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT ylijuutitaina rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT manninenhannae rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT amanatidisstavros rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT amorimantonio rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT baalbakirima rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT baccariniandrea rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT belldavidm rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT bertozzibarbara rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT braklingsteffen rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT brilkesophia rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT murilloluciacaudillo rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT chiurandall rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT chubiwu rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT demenezeslouisphilippe rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT duplissyjonathan rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT finkenzellerhenning rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT carracedoloicgonzalez rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT granzinmanuel rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT guidaroberto rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT hanselarmin rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT hofbauervictoria rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT krechmerjordan rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT lehtipalokatrianne rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT lamkaddamhoussni rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT lampimakimarkus rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT leechuanping rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT makhmutovvladimir rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT marieguillaume rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT mathotserge rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT mauldinroyl rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT mentlerbernhard rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT mullertatjana rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT onnelaantti rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT partolleva rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT petajatuukka rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT philippovmaxim rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT pospisilovaveronika rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT ranjithkumarananth rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT rissanenmatti rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT rorupbirte rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT scholzwiebke rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT shenjiali rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT simonmario rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT sipilamikko rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT steinergerhard rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT stolzenburgdominik rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT thamyeejun rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT tomeantonio rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT wagnerandreac rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT wangdongyus rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT wangyonghong rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT weberstefank rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT winklerpaulm rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT wlasitspeterj rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT wuyusheng rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT xiaomao rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT yeqing rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT zaunerwieczorekmarcel rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT zhouxueqin rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT volkamerrainer rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT riipinenilona rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT dommenjosef rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT curtiusjoachim rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT baltenspergerurs rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT kulmalamarkku rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT worsnopdouglasr rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT kirkbyjasper rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT seinfeldjohnh rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT elhaddadimad rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT flaganrichardc rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation AT donahueneilm rapidgrowthofnewatmosphericparticlesbynitricacidandammoniacondensation |