Cargando…
A new method to control error rates in automated species identification with deep learning algorithms
Processing data from surveys using photos or videos remains a major bottleneck in ecology. Deep Learning Algorithms (DLAs) have been increasingly used to automatically identify organisms on images. However, despite recent advances, it remains difficult to control the error rate of such methods. Here...
Autores principales: | Villon, Sébastien, Mouillot, David, Chaumont, Marc, Subsol, Gérard, Claverie, Thomas, Villéger, Sébastien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334229/ https://www.ncbi.nlm.nih.gov/pubmed/32620873 http://dx.doi.org/10.1038/s41598-020-67573-7 |
Ejemplares similares
-
Author Correction: A new method to control error rates in automated species identification with deep learning algorithms
por: Villon, Sébastien, et al.
Publicado: (2020) -
Leveraging social media and deep learning to detect rare megafauna in video surveys
por: Mannocci, Laura, et al.
Publicado: (2021) -
Confronting species aesthetics with ecological functions in coral reef fish
por: Tribot, Anne-Sophie, et al.
Publicado: (2018) -
Confronting Deep-Learning and Biodiversity Challenges for Automatic Video-Monitoring of Marine Ecosystems
por: Villon, Sébastien, et al.
Publicado: (2022) -
Low Functional β-Diversity Despite High Taxonomic β-Diversity among Tropical Estuarine Fish Communities
por: Villéger, Sébastien, et al.
Publicado: (2012)