Cargando…
Computational approaches in viral ecology
Dynamic virus-host interactions play a critical role in regulating microbial community structure and function. Yet for decades prior to the genomics era, viruses were largely overlooked in microbial ecology research, as only low-throughput culture-based methods of discovering viruses were available....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334295/ https://www.ncbi.nlm.nih.gov/pubmed/32670501 http://dx.doi.org/10.1016/j.csbj.2020.06.019 |
Sumario: | Dynamic virus-host interactions play a critical role in regulating microbial community structure and function. Yet for decades prior to the genomics era, viruses were largely overlooked in microbial ecology research, as only low-throughput culture-based methods of discovering viruses were available. With the advent of metagenomics, culture-independent techniques have provided exciting opportunities to discover and study new viruses. Here, we review recently developed computational methods for identifying viral sequences, exploring viral diversity in environmental samples, and predicting hosts from metagenomic sequence data. Methods to analyze viruses in silico utilize unconventional approaches to tackle challenges unique to viruses, such as vast diversity, mosaic viral genomes, and the lack of universal marker genes. As the field of viral ecology expands exponentially, computational advances have become increasingly important to gain insight into the role viruses in diverse habitats. |
---|