Cargando…
The Contribution of lincRNAs at the Interface between Cell Cycle Regulation and Cell State Maintenance
Cell cycle progression is controlled by the interplay of established cell cycle regulators. Changes in these regulators' activity underpin differences in cell cycle kinetics between cell types. We investigated whether long intergenic noncoding RNAs (lincRNAs) contribute to embryonic stem cell c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334372/ https://www.ncbi.nlm.nih.gov/pubmed/32619701 http://dx.doi.org/10.1016/j.isci.2020.101291 |
Sumario: | Cell cycle progression is controlled by the interplay of established cell cycle regulators. Changes in these regulators' activity underpin differences in cell cycle kinetics between cell types. We investigated whether long intergenic noncoding RNAs (lincRNAs) contribute to embryonic stem cell cycle adaptations. Using single-cell RNA sequencing data for mouse embryonic stem cells (mESCs) staged as G1, S, or G2/M we found differentially expressed lincRNAs are enriched among cell cycle-regulated genes. These lincRNAs (CC-lincRNAs) are co-expressed with genes involved in cell cycle regulation. We tested the impact of two CC-lincRNA candidates and show using CRISPR activation that increasing their expression is associated with deregulated cell cycle progression. Interestingly, CC-lincRNAs are often differentially expressed between G1 and S, their promoters are enriched in pluripotency transcription factor (TF) binding sites, and their transcripts are frequently co-regulated with genes involved in the maintenance of pluripotency, suggesting a contribution of CC-lincRNAs to mESC cell cycle adaptations. |
---|