Cargando…
Auditory representation of learned sound sequences in motor regions of the macaque brain
Human speech production requires the ability to couple motor actions with their auditory consequences. Nonhuman primates might not have speech because they lack this ability. To address this question, we trained macaques to perform an auditory–motor task producing sound sequences via hand presses on...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334521/ https://www.ncbi.nlm.nih.gov/pubmed/32541016 http://dx.doi.org/10.1073/pnas.1915610117 |
_version_ | 1783553946172784640 |
---|---|
author | Archakov, Denis DeWitt, Iain Kuśmierek, Paweł Ortiz-Rios, Michael Cameron, Daniel Cui, Ding Morin, Elyse L. VanMeter, John W. Sams, Mikko Jääskeläinen, Iiro P. Rauschecker, Josef P. |
author_facet | Archakov, Denis DeWitt, Iain Kuśmierek, Paweł Ortiz-Rios, Michael Cameron, Daniel Cui, Ding Morin, Elyse L. VanMeter, John W. Sams, Mikko Jääskeläinen, Iiro P. Rauschecker, Josef P. |
author_sort | Archakov, Denis |
collection | PubMed |
description | Human speech production requires the ability to couple motor actions with their auditory consequences. Nonhuman primates might not have speech because they lack this ability. To address this question, we trained macaques to perform an auditory–motor task producing sound sequences via hand presses on a newly designed device (“monkey piano”). Catch trials were interspersed to ascertain the monkeys were listening to the sounds they produced. Functional MRI was then used to map brain activity while the animals listened attentively to the sound sequences they had learned to produce and to two control sequences, which were either completely unfamiliar or familiar through passive exposure only. All sounds activated auditory midbrain and cortex, but listening to the sequences that were learned by self-production additionally activated the putamen and the hand and arm regions of motor cortex. These results indicate that, in principle, monkeys are capable of forming internal models linking sound perception and production in motor regions of the brain, so this ability is not special to speech in humans. However, the coupling of sounds and actions in nonhuman primates (and the availability of an internal model supporting it) seems not to extend to the upper vocal tract, that is, the supralaryngeal articulators, which are key for the production of speech sounds in humans. The origin of speech may have required the evolution of a “command apparatus” similar to the control of the hand, which was crucial for the evolution of tool use. |
format | Online Article Text |
id | pubmed-7334521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-73345212020-07-15 Auditory representation of learned sound sequences in motor regions of the macaque brain Archakov, Denis DeWitt, Iain Kuśmierek, Paweł Ortiz-Rios, Michael Cameron, Daniel Cui, Ding Morin, Elyse L. VanMeter, John W. Sams, Mikko Jääskeläinen, Iiro P. Rauschecker, Josef P. Proc Natl Acad Sci U S A Biological Sciences Human speech production requires the ability to couple motor actions with their auditory consequences. Nonhuman primates might not have speech because they lack this ability. To address this question, we trained macaques to perform an auditory–motor task producing sound sequences via hand presses on a newly designed device (“monkey piano”). Catch trials were interspersed to ascertain the monkeys were listening to the sounds they produced. Functional MRI was then used to map brain activity while the animals listened attentively to the sound sequences they had learned to produce and to two control sequences, which were either completely unfamiliar or familiar through passive exposure only. All sounds activated auditory midbrain and cortex, but listening to the sequences that were learned by self-production additionally activated the putamen and the hand and arm regions of motor cortex. These results indicate that, in principle, monkeys are capable of forming internal models linking sound perception and production in motor regions of the brain, so this ability is not special to speech in humans. However, the coupling of sounds and actions in nonhuman primates (and the availability of an internal model supporting it) seems not to extend to the upper vocal tract, that is, the supralaryngeal articulators, which are key for the production of speech sounds in humans. The origin of speech may have required the evolution of a “command apparatus” similar to the control of the hand, which was crucial for the evolution of tool use. National Academy of Sciences 2020-06-30 2020-06-15 /pmc/articles/PMC7334521/ /pubmed/32541016 http://dx.doi.org/10.1073/pnas.1915610117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Archakov, Denis DeWitt, Iain Kuśmierek, Paweł Ortiz-Rios, Michael Cameron, Daniel Cui, Ding Morin, Elyse L. VanMeter, John W. Sams, Mikko Jääskeläinen, Iiro P. Rauschecker, Josef P. Auditory representation of learned sound sequences in motor regions of the macaque brain |
title | Auditory representation of learned sound sequences in motor regions of the macaque brain |
title_full | Auditory representation of learned sound sequences in motor regions of the macaque brain |
title_fullStr | Auditory representation of learned sound sequences in motor regions of the macaque brain |
title_full_unstemmed | Auditory representation of learned sound sequences in motor regions of the macaque brain |
title_short | Auditory representation of learned sound sequences in motor regions of the macaque brain |
title_sort | auditory representation of learned sound sequences in motor regions of the macaque brain |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334521/ https://www.ncbi.nlm.nih.gov/pubmed/32541016 http://dx.doi.org/10.1073/pnas.1915610117 |
work_keys_str_mv | AT archakovdenis auditoryrepresentationoflearnedsoundsequencesinmotorregionsofthemacaquebrain AT dewittiain auditoryrepresentationoflearnedsoundsequencesinmotorregionsofthemacaquebrain AT kusmierekpaweł auditoryrepresentationoflearnedsoundsequencesinmotorregionsofthemacaquebrain AT ortizriosmichael auditoryrepresentationoflearnedsoundsequencesinmotorregionsofthemacaquebrain AT camerondaniel auditoryrepresentationoflearnedsoundsequencesinmotorregionsofthemacaquebrain AT cuiding auditoryrepresentationoflearnedsoundsequencesinmotorregionsofthemacaquebrain AT morinelysel auditoryrepresentationoflearnedsoundsequencesinmotorregionsofthemacaquebrain AT vanmeterjohnw auditoryrepresentationoflearnedsoundsequencesinmotorregionsofthemacaquebrain AT samsmikko auditoryrepresentationoflearnedsoundsequencesinmotorregionsofthemacaquebrain AT jaaskelaineniirop auditoryrepresentationoflearnedsoundsequencesinmotorregionsofthemacaquebrain AT rauscheckerjosefp auditoryrepresentationoflearnedsoundsequencesinmotorregionsofthemacaquebrain |