Cargando…
Machine Learning and Student Performance in Teams
This project applies a variety of machine learning algorithms to the interactions of first year college students using the GroupMe messaging platform to collaborate online on a team project. The project assesses the efficacy of these techniques in predicting existing measures of team member performa...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334682/ http://dx.doi.org/10.1007/978-3-030-52240-7_55 |
Sumario: | This project applies a variety of machine learning algorithms to the interactions of first year college students using the GroupMe messaging platform to collaborate online on a team project. The project assesses the efficacy of these techniques in predicting existing measures of team member performance, generated by self- and peer assessment through the Comprehensive Assessment of Team Member Effectiveness (CATME) tool. We employed a wide range of machine learning classifiers (SVM, KNN, Random Forests, Logistic Regression, Bernoulli Naive Bayes) and a range of features (generated by a socio-linguistic text analysis program, Doc2Vec, and TF-IDF) to predict individual team member performance. Our results suggest machine learning models hold out the possibility of providing accurate, real-time information about team and team member behaviors that instructors can use to support students engaged in team-based work, though challenges remain. |
---|