Cargando…
Learning Outcomes and Their Relatedness Under Curriculum Drift
A typical medical curriculum is organized as a hierarchy of learning outcomes (LOs), each LO is a short text that describes a medical concept. Machine learning models have been applied to predict relatedness between LOs. These models are trained on examples of LO-relationships annotated by experts....
Autores principales: | Mondal, Sneha, Dhamecha, Tejas I., Pathak, Smriti, Mendoza, Red, Wijayarathna, Gayathri K., Gagnon, Paul, Carlstedt-Duke, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334708/ http://dx.doi.org/10.1007/978-3-030-52240-7_39 |
Ejemplares similares
-
Statistical Mechanics of On-Line Learning Under Concept Drift
por: Straat, Michiel, et al.
Publicado: (2018) -
Graphics for relatedness research
por: Galván‐Femenía, Iván, et al.
Publicado: (2017) -
Applying Relatedness to Explain Learning Outcomes of STEM Maker Activities
por: Weng, Xiaojing, et al.
Publicado: (2022) -
Recognizing Disguised Faces: Human and Machine Evaluation
por: Dhamecha, Tejas Indulal, et al.
Publicado: (2014) -
Kernelized Heterogeneity-Aware Cross-View Face Recognition
por: Dhamecha, Tejas I., et al.
Publicado: (2021)