Cargando…
Towards Interpretable Deep Learning Models for Knowledge Tracing
Driven by the fast advancements of deep learning techniques, deep neural network has been recently adopted to design knowledge tracing (KT) models for achieving better prediction performance. However, the lack of interpretability of these models has painfully impeded their practical applications, as...
Autores principales: | Lu, Yu, Wang, Deliang, Meng, Qinggang, Chen, Penghe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334712/ http://dx.doi.org/10.1007/978-3-030-52240-7_34 |
Ejemplares similares
-
HELP-DKT: an interpretable cognitive model of how students learn programming based on deep knowledge tracing
por: Liang, Yu, et al.
Publicado: (2022) -
Deep knowledge tracing with learning curves
por: Su, Hang, et al.
Publicado: (2023) -
Learning from Interpretable Analysis: Attention-Based Knowledge Tracing
por: Zhu, Jia, et al.
Publicado: (2020) -
Deep Knowledge Tracing with Transformers
por: Pu, Shi, et al.
Publicado: (2020) -
Interpretable patent recommendation with knowledge graph and deep learning
por: Chen, Han, et al.
Publicado: (2023)