Cargando…
Automated Short-Answer Grading Using Deep Neural Networks and Item Response Theory
Automated short-answer grading (ASAG) methods using deep neural networks (DNN) have achieved state-of-the-art accuracy. However, further improvement is required for high-stakes and large-scale examinations because even a small scoring error will affect many test-takers. To improve scoring accuracy,...
Autores principales: | Uto, Masaki, Uchida, Yuto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334733/ http://dx.doi.org/10.1007/978-3-030-52240-7_61 |
Ejemplares similares
-
Robust Neural Automated Essay Scoring Using Item Response Theory
por: Uto, Masaki, et al.
Publicado: (2020) -
Empirical comparison of item response theory models with rater's parameters
por: Uto, Masaki, et al.
Publicado: (2018) -
Automatic grading for Arabic short answer questions using optimized deep learning model
por: Abdul Salam, Mustafa, et al.
Publicado: (2022) -
Fooling Automatic Short Answer Grading Systems
por: Filighera, Anna, et al.
Publicado: (2020) -
Investigating Transformers for Automatic Short Answer Grading
por: Camus, Leon, et al.
Publicado: (2020)