Cargando…

CircANXA2 Promotes Myocardial Apoptosis in Myocardial Ischemia-Reperfusion Injury via Inhibiting miRNA-133 Expression

OBJECTIVE: This project is aimed at investigating whether CircANXA2 can promote the apoptosis of myocardial cells by inhibiting miR-133 expression and thereby participate in the development of myocardial ischemia-reperfusion injury. Materials and Method. Quantitative real-time polymerase chain react...

Descripción completa

Detalles Bibliográficos
Autores principales: Zong, Liang, Wang, Weixin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334784/
https://www.ncbi.nlm.nih.gov/pubmed/32685535
http://dx.doi.org/10.1155/2020/8590861
Descripción
Sumario:OBJECTIVE: This project is aimed at investigating whether CircANXA2 can promote the apoptosis of myocardial cells by inhibiting miR-133 expression and thereby participate in the development of myocardial ischemia-reperfusion injury. Materials and Method. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression level of CircANXA2 in H9c2 cells after hypoxia/reoxygenation (H/R) treatment. Evaluation of myocardial injury markers in H9c2 cells was performed using commercial kits, including lactate dehydrogenase (LDH), malonaldehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidation (GSH-PX). MTT analysis and flow cytometry were used to detect myocardial cell proliferation and apoptosis, respectively. Western blot was used to detect the protein expression of apoptosis-related genes. RESULT: qRT-PCR results showed that compared with the control, the expression of CircANXA2 was upregulated and the expression level of miR-133 was significantly decreased in H/R-treated H9c2 cells. CircANXA2 overexpression increased LDH, MDA, SOD, and GSH-PX activity in H/R-treated H9c2 cells. At the same time, CircANXA2 overexpression inhibited the proliferation of H/R-treated cells, and CircANXA2 was able to induce cardiomyocyte apoptosis. Western blot results showed that after overexpression of CircANXA2, the proapoptotic genes Bax and cytochrome C was upregulated, while the antiapoptotic gene Bcl-2 was downregulated. In H9c2 cells, upregulating miR-133 can reverse the inhibition of proliferation induced by CircANXA2 overexpression and increase apoptosis. CONCLUSIONS: CircANXA2 promotes cardiomyocyte apoptosis in myocardial ischemia-reperfusion injury by inhibiting the expression of miR-133. CircANXA2 may be a potential target for myocardial ischemia-reperfusion injury.