Cargando…
A Tale of Three Signatures: Practical Attack of ECDSA with wNAF
Attacking ECDSA with wNAF implementation for the scalar multiplication first requires some side channel analysis to collect information, then lattice based methods to recover the secret key. In this paper, we reinvestigate the construction of the lattice used in one of these methods, the Extended Hi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334987/ http://dx.doi.org/10.1007/978-3-030-51938-4_18 |
Sumario: | Attacking ECDSA with wNAF implementation for the scalar multiplication first requires some side channel analysis to collect information, then lattice based methods to recover the secret key. In this paper, we reinvestigate the construction of the lattice used in one of these methods, the Extended Hidden Number Problem (EHNP). We find the secret key with only 3 signatures, thus reaching a known theoretical bound, whereas best previous methods required at least 4 signatures in practice. Given a specific leakage model, our attack is more efficient than previous attacks, and for most cases, has better probability of success. To obtain such results, we perform a detailed analysis of the parameters used in the attack and introduce a preprocessing method which reduces by a factor up to 7 the total time to recover the secret key for some parameters. We perform an error resilience analysis which has never been done before in the setup of EHNP. Our construction find the secret key with a small amount of erroneous traces, up to [Formula: see text] of false digits, and [Formula: see text] with a specific type of error. |
---|