Cargando…
Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions
Global climate models represent small-scale processes such as convection using subgrid models known as parameterizations, and these parameterizations contribute substantially to uncertainty in climate projections. Machine learning of new parameterizations from high-resolution model output is a promi...
Autores principales: | Yuval, Janni, O’Gorman, Paul A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335176/ https://www.ncbi.nlm.nih.gov/pubmed/32620769 http://dx.doi.org/10.1038/s41467-020-17142-3 |
Ejemplares similares
-
Deep learning to represent subgrid processes in climate models
por: Rasp, Stephan, et al.
Publicado: (2018) -
Alleviation of an Arctic Sea Ice Bias in a Coupled Model Through Modifications in the Subgrid‐Scale Orographic Parameterization
por: Gastineau, Guillaume, et al.
Publicado: (2020) -
Machine learning and the quest for objectivity in climate model parameterization
por: Jebeile, Julie, et al.
Publicado: (2023) -
Numerics and subgrid‐scale modeling in large eddy simulations of stratocumulus clouds
por: Pressel, Kyle G., et al.
Publicado: (2017) -
Simulating Lagrangian Subgrid‐Scale Dispersion on Neutral Surfaces in the Ocean
por: Reijnders, Daan, et al.
Publicado: (2022)