Cargando…
Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders
Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive picture of a specific disease, multiple studies need...
Autores principales: | Sood, Meemansa, Sahay, Akrishta, Karki, Reagon, Emon, Mohammad Asif, Vrooman, Henri, Hofmann-Apitius, Martin, Fröhlich, Holger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335180/ https://www.ncbi.nlm.nih.gov/pubmed/32620927 http://dx.doi.org/10.1038/s41598-020-67398-4 |
Ejemplares similares
-
Variational Autoencoder Modular Bayesian Networks for Simulation of Heterogeneous Clinical Study Data
por: Gootjes-Dreesbach, Luise, et al.
Publicado: (2020) -
Deep learning for clustering of multivariate clinical patient trajectories with missing values
por: de Jong, Johann, et al.
Publicado: (2019) -
Clustering of Alzheimer’s and Parkinson’s disease based on genetic burden of shared molecular mechanisms
por: Emon, Mohammad Asif, et al.
Publicado: (2020) -
Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia - lessons for translation into clinical practice
por: Birkenbihl, Colin, et al.
Publicado: (2020) -
Using Drugs as Molecular Probes: A Computational Chemical Biology Approach in Neurodegenerative Diseases
por: Emon, Mohammad Asif Emran Khan, et al.
Publicado: (2017)