Cargando…
Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
Geoscientists mainly identify subsurface geologic features using exploration-derived seismic data. Classification or segmentation of 2D/3D seismic images commonly relies on conventional deep learning methods for image recognition. However, complex reflections of seismic waves tend to form high-dimen...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335201/ https://www.ncbi.nlm.nih.gov/pubmed/32620867 http://dx.doi.org/10.1038/s41467-020-17123-6 |
Sumario: | Geoscientists mainly identify subsurface geologic features using exploration-derived seismic data. Classification or segmentation of 2D/3D seismic images commonly relies on conventional deep learning methods for image recognition. However, complex reflections of seismic waves tend to form high-dimensional and multi-scale signals, making traditional convolutional neural networks (CNNs) computationally costly. Here we propose a highly efficient and resource-saving CNN architecture (SeismicPatchNet) with topological modules and multi-scale-feature fusion units for classifying seismic data, which was discovered by an automated data-driven search strategy. The storage volume of the architecture parameters (0.73 M) is only ~2.7 MB, ~0.5% of the well-known VGG-16 architecture. SeismicPatchNet predicts nearly 18 times faster than ResNet-50 and shows an overwhelming advantage in identifying Bottom Simulating Reflection (BSR), an indicator of marine gas-hydrate resources. Saliency mapping demonstrated that our architecture captured key features well. These results suggest the prospect of end-to-end interpretation of multiple seismic datasets at extremely low computational cost. |
---|