Cargando…
Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
Geoscientists mainly identify subsurface geologic features using exploration-derived seismic data. Classification or segmentation of 2D/3D seismic images commonly relies on conventional deep learning methods for image recognition. However, complex reflections of seismic waves tend to form high-dimen...
Autores principales: | Geng, Zhi, Wang, Yanfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335201/ https://www.ncbi.nlm.nih.gov/pubmed/32620867 http://dx.doi.org/10.1038/s41467-020-17123-6 |
Ejemplares similares
-
Author Correction: Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
por: Geng, Zhi, et al.
Publicado: (2020) -
A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification
por: Wang, Luoyan, et al.
Publicado: (2022) -
An Efficient Multi-Scale Convolutional Neural Network Based Multi-Class Brain MRI Classification for SaMD
por: Yazdan, Syed Ali, et al.
Publicado: (2022) -
A storage-efficient ensemble classification using filter sharing on binarized convolutional neural networks
por: Kim, HyunJin, et al.
Publicado: (2022) -
Hierarchical Multi-Scale Convolutional Neural Networks for Hyperspectral Image Classification
por: Li, Simin, et al.
Publicado: (2019)