Cargando…
Machine learning-based prediction of acute severity in infants hospitalized for bronchiolitis: a multicenter prospective study
We aimed to develop machine learning models to accurately predict bronchiolitis severity, and to compare their predictive performance with a conventional scoring (reference) model. In a 17-center prospective study of infants (aged < 1 year) hospitalized for bronchiolitis, by using routinely-avail...
Autores principales: | Raita, Yoshihiko, Camargo, Carlos A., Macias, Charles G., Mansbach, Jonathan M., Piedra, Pedro A., Porter, Stephen C., Teach, Stephen J., Hasegawa, Kohei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335203/ https://www.ncbi.nlm.nih.gov/pubmed/32620819 http://dx.doi.org/10.1038/s41598-020-67629-8 |
Ejemplares similares
-
Association of endemic coronaviruses with nasopharyngeal metabolome and microbiota among infants with severe bronchiolitis: A prospective multicenter study
por: Fujiogi, Michimasa, et al.
Publicado: (2020) -
Integrated omics endotyping of infants with respiratory syncytial virus bronchiolitis and risk of childhood asthma
por: Raita, Yoshihiko, et al.
Publicado: (2021) -
Integrated relationship of nasopharyngeal airway host response and microbiome associates with bronchiolitis severity
por: Fujiogi, Michimasa, et al.
Publicado: (2022) -
Immunoglobulin E-virus phenotypes of infant bronchiolitis and risk of childhood asthma
por: Shibata, Ryohei, et al.
Publicado: (2023) -
Association between rhinovirus species and nasopharyngeal microbiota in infants with severe bronchiolitis
por: Toivonen, Laura, et al.
Publicado: (2019)