Cargando…

A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone

The flat bones of the skull are densely innervated during development, but little is known regarding their role during repair. We describe a neurotrophic mechanism that directs sensory nerve transit in the mouse calvaria. Patent cranial suture mesenchyme represents an NGF (nerve growth factor)-rich...

Descripción completa

Detalles Bibliográficos
Autores principales: Meyers, Carolyn A., Lee, Seungyong, Sono, Takashi, Xu, Jiajia, Negri, Stefano, Tian, Ye, Wang, Yiyun, Li, Zhu, Miller, Sarah, Chang, Leslie, Gao, Yongxing, Minichiello, Liliana, Clemens, Thomas L., James, Aaron W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335423/
https://www.ncbi.nlm.nih.gov/pubmed/32460020
http://dx.doi.org/10.1016/j.celrep.2020.107696
_version_ 1783554135342186496
author Meyers, Carolyn A.
Lee, Seungyong
Sono, Takashi
Xu, Jiajia
Negri, Stefano
Tian, Ye
Wang, Yiyun
Li, Zhu
Miller, Sarah
Chang, Leslie
Gao, Yongxing
Minichiello, Liliana
Clemens, Thomas L.
James, Aaron W.
author_facet Meyers, Carolyn A.
Lee, Seungyong
Sono, Takashi
Xu, Jiajia
Negri, Stefano
Tian, Ye
Wang, Yiyun
Li, Zhu
Miller, Sarah
Chang, Leslie
Gao, Yongxing
Minichiello, Liliana
Clemens, Thomas L.
James, Aaron W.
author_sort Meyers, Carolyn A.
collection PubMed
description The flat bones of the skull are densely innervated during development, but little is known regarding their role during repair. We describe a neurotrophic mechanism that directs sensory nerve transit in the mouse calvaria. Patent cranial suture mesenchyme represents an NGF (nerve growth factor)-rich domain, in which sensory nerves transit. Experimental calvarial injury upregulates Ngf in an IL-1β/TNF-α-rich defect niche, with consequent axonal ingrowth. In calvarial osteoblasts, IL-1β and TNF-α stimulate Ngf and downstream NF-κB signaling. Locoregional deletion of Ngf delays defect site re-innervation and blunted repair. Genetic disruption of Ngf among LysM-expressing macrophages phenocopies these observations, whereas conditional knockout of Ngf among Pdgfra-expressing cells does not. Finally, inhibition of TrkA catalytic activity similarly delays re-innervation and repair. These results demonstrate an essential role of NGF-TrkA signaling in bone healing and implicate macrophage-derived NGF-induced ingrowth of skeletal sensory nerves as an important mediator of this repair.
format Online
Article
Text
id pubmed-7335423
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-73354232020-07-05 A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone Meyers, Carolyn A. Lee, Seungyong Sono, Takashi Xu, Jiajia Negri, Stefano Tian, Ye Wang, Yiyun Li, Zhu Miller, Sarah Chang, Leslie Gao, Yongxing Minichiello, Liliana Clemens, Thomas L. James, Aaron W. Cell Rep Article The flat bones of the skull are densely innervated during development, but little is known regarding their role during repair. We describe a neurotrophic mechanism that directs sensory nerve transit in the mouse calvaria. Patent cranial suture mesenchyme represents an NGF (nerve growth factor)-rich domain, in which sensory nerves transit. Experimental calvarial injury upregulates Ngf in an IL-1β/TNF-α-rich defect niche, with consequent axonal ingrowth. In calvarial osteoblasts, IL-1β and TNF-α stimulate Ngf and downstream NF-κB signaling. Locoregional deletion of Ngf delays defect site re-innervation and blunted repair. Genetic disruption of Ngf among LysM-expressing macrophages phenocopies these observations, whereas conditional knockout of Ngf among Pdgfra-expressing cells does not. Finally, inhibition of TrkA catalytic activity similarly delays re-innervation and repair. These results demonstrate an essential role of NGF-TrkA signaling in bone healing and implicate macrophage-derived NGF-induced ingrowth of skeletal sensory nerves as an important mediator of this repair. 2020-05-26 /pmc/articles/PMC7335423/ /pubmed/32460020 http://dx.doi.org/10.1016/j.celrep.2020.107696 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Meyers, Carolyn A.
Lee, Seungyong
Sono, Takashi
Xu, Jiajia
Negri, Stefano
Tian, Ye
Wang, Yiyun
Li, Zhu
Miller, Sarah
Chang, Leslie
Gao, Yongxing
Minichiello, Liliana
Clemens, Thomas L.
James, Aaron W.
A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone
title A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone
title_full A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone
title_fullStr A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone
title_full_unstemmed A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone
title_short A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone
title_sort neurotrophic mechanism directs sensory nerve transit in cranial bone
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335423/
https://www.ncbi.nlm.nih.gov/pubmed/32460020
http://dx.doi.org/10.1016/j.celrep.2020.107696
work_keys_str_mv AT meyerscarolyna aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT leeseungyong aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT sonotakashi aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT xujiajia aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT negristefano aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT tianye aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT wangyiyun aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT lizhu aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT millersarah aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT changleslie aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT gaoyongxing aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT minichielloliliana aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT clemensthomasl aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT jamesaaronw aneurotrophicmechanismdirectssensorynervetransitincranialbone
AT meyerscarolyna neurotrophicmechanismdirectssensorynervetransitincranialbone
AT leeseungyong neurotrophicmechanismdirectssensorynervetransitincranialbone
AT sonotakashi neurotrophicmechanismdirectssensorynervetransitincranialbone
AT xujiajia neurotrophicmechanismdirectssensorynervetransitincranialbone
AT negristefano neurotrophicmechanismdirectssensorynervetransitincranialbone
AT tianye neurotrophicmechanismdirectssensorynervetransitincranialbone
AT wangyiyun neurotrophicmechanismdirectssensorynervetransitincranialbone
AT lizhu neurotrophicmechanismdirectssensorynervetransitincranialbone
AT millersarah neurotrophicmechanismdirectssensorynervetransitincranialbone
AT changleslie neurotrophicmechanismdirectssensorynervetransitincranialbone
AT gaoyongxing neurotrophicmechanismdirectssensorynervetransitincranialbone
AT minichielloliliana neurotrophicmechanismdirectssensorynervetransitincranialbone
AT clemensthomasl neurotrophicmechanismdirectssensorynervetransitincranialbone
AT jamesaaronw neurotrophicmechanismdirectssensorynervetransitincranialbone