Cargando…
A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone
The flat bones of the skull are densely innervated during development, but little is known regarding their role during repair. We describe a neurotrophic mechanism that directs sensory nerve transit in the mouse calvaria. Patent cranial suture mesenchyme represents an NGF (nerve growth factor)-rich...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335423/ https://www.ncbi.nlm.nih.gov/pubmed/32460020 http://dx.doi.org/10.1016/j.celrep.2020.107696 |
_version_ | 1783554135342186496 |
---|---|
author | Meyers, Carolyn A. Lee, Seungyong Sono, Takashi Xu, Jiajia Negri, Stefano Tian, Ye Wang, Yiyun Li, Zhu Miller, Sarah Chang, Leslie Gao, Yongxing Minichiello, Liliana Clemens, Thomas L. James, Aaron W. |
author_facet | Meyers, Carolyn A. Lee, Seungyong Sono, Takashi Xu, Jiajia Negri, Stefano Tian, Ye Wang, Yiyun Li, Zhu Miller, Sarah Chang, Leslie Gao, Yongxing Minichiello, Liliana Clemens, Thomas L. James, Aaron W. |
author_sort | Meyers, Carolyn A. |
collection | PubMed |
description | The flat bones of the skull are densely innervated during development, but little is known regarding their role during repair. We describe a neurotrophic mechanism that directs sensory nerve transit in the mouse calvaria. Patent cranial suture mesenchyme represents an NGF (nerve growth factor)-rich domain, in which sensory nerves transit. Experimental calvarial injury upregulates Ngf in an IL-1β/TNF-α-rich defect niche, with consequent axonal ingrowth. In calvarial osteoblasts, IL-1β and TNF-α stimulate Ngf and downstream NF-κB signaling. Locoregional deletion of Ngf delays defect site re-innervation and blunted repair. Genetic disruption of Ngf among LysM-expressing macrophages phenocopies these observations, whereas conditional knockout of Ngf among Pdgfra-expressing cells does not. Finally, inhibition of TrkA catalytic activity similarly delays re-innervation and repair. These results demonstrate an essential role of NGF-TrkA signaling in bone healing and implicate macrophage-derived NGF-induced ingrowth of skeletal sensory nerves as an important mediator of this repair. |
format | Online Article Text |
id | pubmed-7335423 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-73354232020-07-05 A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone Meyers, Carolyn A. Lee, Seungyong Sono, Takashi Xu, Jiajia Negri, Stefano Tian, Ye Wang, Yiyun Li, Zhu Miller, Sarah Chang, Leslie Gao, Yongxing Minichiello, Liliana Clemens, Thomas L. James, Aaron W. Cell Rep Article The flat bones of the skull are densely innervated during development, but little is known regarding their role during repair. We describe a neurotrophic mechanism that directs sensory nerve transit in the mouse calvaria. Patent cranial suture mesenchyme represents an NGF (nerve growth factor)-rich domain, in which sensory nerves transit. Experimental calvarial injury upregulates Ngf in an IL-1β/TNF-α-rich defect niche, with consequent axonal ingrowth. In calvarial osteoblasts, IL-1β and TNF-α stimulate Ngf and downstream NF-κB signaling. Locoregional deletion of Ngf delays defect site re-innervation and blunted repair. Genetic disruption of Ngf among LysM-expressing macrophages phenocopies these observations, whereas conditional knockout of Ngf among Pdgfra-expressing cells does not. Finally, inhibition of TrkA catalytic activity similarly delays re-innervation and repair. These results demonstrate an essential role of NGF-TrkA signaling in bone healing and implicate macrophage-derived NGF-induced ingrowth of skeletal sensory nerves as an important mediator of this repair. 2020-05-26 /pmc/articles/PMC7335423/ /pubmed/32460020 http://dx.doi.org/10.1016/j.celrep.2020.107696 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Meyers, Carolyn A. Lee, Seungyong Sono, Takashi Xu, Jiajia Negri, Stefano Tian, Ye Wang, Yiyun Li, Zhu Miller, Sarah Chang, Leslie Gao, Yongxing Minichiello, Liliana Clemens, Thomas L. James, Aaron W. A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone |
title | A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone |
title_full | A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone |
title_fullStr | A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone |
title_full_unstemmed | A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone |
title_short | A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone |
title_sort | neurotrophic mechanism directs sensory nerve transit in cranial bone |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335423/ https://www.ncbi.nlm.nih.gov/pubmed/32460020 http://dx.doi.org/10.1016/j.celrep.2020.107696 |
work_keys_str_mv | AT meyerscarolyna aneurotrophicmechanismdirectssensorynervetransitincranialbone AT leeseungyong aneurotrophicmechanismdirectssensorynervetransitincranialbone AT sonotakashi aneurotrophicmechanismdirectssensorynervetransitincranialbone AT xujiajia aneurotrophicmechanismdirectssensorynervetransitincranialbone AT negristefano aneurotrophicmechanismdirectssensorynervetransitincranialbone AT tianye aneurotrophicmechanismdirectssensorynervetransitincranialbone AT wangyiyun aneurotrophicmechanismdirectssensorynervetransitincranialbone AT lizhu aneurotrophicmechanismdirectssensorynervetransitincranialbone AT millersarah aneurotrophicmechanismdirectssensorynervetransitincranialbone AT changleslie aneurotrophicmechanismdirectssensorynervetransitincranialbone AT gaoyongxing aneurotrophicmechanismdirectssensorynervetransitincranialbone AT minichielloliliana aneurotrophicmechanismdirectssensorynervetransitincranialbone AT clemensthomasl aneurotrophicmechanismdirectssensorynervetransitincranialbone AT jamesaaronw aneurotrophicmechanismdirectssensorynervetransitincranialbone AT meyerscarolyna neurotrophicmechanismdirectssensorynervetransitincranialbone AT leeseungyong neurotrophicmechanismdirectssensorynervetransitincranialbone AT sonotakashi neurotrophicmechanismdirectssensorynervetransitincranialbone AT xujiajia neurotrophicmechanismdirectssensorynervetransitincranialbone AT negristefano neurotrophicmechanismdirectssensorynervetransitincranialbone AT tianye neurotrophicmechanismdirectssensorynervetransitincranialbone AT wangyiyun neurotrophicmechanismdirectssensorynervetransitincranialbone AT lizhu neurotrophicmechanismdirectssensorynervetransitincranialbone AT millersarah neurotrophicmechanismdirectssensorynervetransitincranialbone AT changleslie neurotrophicmechanismdirectssensorynervetransitincranialbone AT gaoyongxing neurotrophicmechanismdirectssensorynervetransitincranialbone AT minichielloliliana neurotrophicmechanismdirectssensorynervetransitincranialbone AT clemensthomasl neurotrophicmechanismdirectssensorynervetransitincranialbone AT jamesaaronw neurotrophicmechanismdirectssensorynervetransitincranialbone |