Cargando…

Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry

BACKGROUND: Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography–determined qualitative and q...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Donghee, Kolli, Kranthi K., Al'Aref, Subhi J., Baskaran, Lohendran, van Rosendael, Alexander R., Gransar, Heidi, Andreini, Daniele, Budoff, Matthew J., Cademartiri, Filippo, Chinnaiyan, Kavitha, Choi, Jung Hyun, Conte, Edoardo, Marques, Hugo, de Araújo Gonçalves, Pedro, Gottlieb, Ilan, Hadamitzky, Martin, Leipsic, Jonathon A., Maffei, Erica, Pontone, Gianluca, Raff, Gilbert L., Shin, Sangshoon, Kim, Yong‐Jin, Lee, Byoung Kwon, Chun, Eun Ju, Sung, Ji Min, Lee, Sang‐Eun, Virmani, Renu, Samady, Habib, Stone, Peter, Narula, Jagat, Berman, Daniel S., Bax, Jeroen J., Shaw, Leslee J., Lin, Fay Y., Min, James K., Chang, Hyuk‐Jae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335586/
https://www.ncbi.nlm.nih.gov/pubmed/32089046
http://dx.doi.org/10.1161/JAHA.119.013958
_version_ 1783554169647398912
author Han, Donghee
Kolli, Kranthi K.
Al'Aref, Subhi J.
Baskaran, Lohendran
van Rosendael, Alexander R.
Gransar, Heidi
Andreini, Daniele
Budoff, Matthew J.
Cademartiri, Filippo
Chinnaiyan, Kavitha
Choi, Jung Hyun
Conte, Edoardo
Marques, Hugo
de Araújo Gonçalves, Pedro
Gottlieb, Ilan
Hadamitzky, Martin
Leipsic, Jonathon A.
Maffei, Erica
Pontone, Gianluca
Raff, Gilbert L.
Shin, Sangshoon
Kim, Yong‐Jin
Lee, Byoung Kwon
Chun, Eun Ju
Sung, Ji Min
Lee, Sang‐Eun
Virmani, Renu
Samady, Habib
Stone, Peter
Narula, Jagat
Berman, Daniel S.
Bax, Jeroen J.
Shaw, Leslee J.
Lin, Fay Y.
Min, James K.
Chang, Hyuk‐Jae
author_facet Han, Donghee
Kolli, Kranthi K.
Al'Aref, Subhi J.
Baskaran, Lohendran
van Rosendael, Alexander R.
Gransar, Heidi
Andreini, Daniele
Budoff, Matthew J.
Cademartiri, Filippo
Chinnaiyan, Kavitha
Choi, Jung Hyun
Conte, Edoardo
Marques, Hugo
de Araújo Gonçalves, Pedro
Gottlieb, Ilan
Hadamitzky, Martin
Leipsic, Jonathon A.
Maffei, Erica
Pontone, Gianluca
Raff, Gilbert L.
Shin, Sangshoon
Kim, Yong‐Jin
Lee, Byoung Kwon
Chun, Eun Ju
Sung, Ji Min
Lee, Sang‐Eun
Virmani, Renu
Samady, Habib
Stone, Peter
Narula, Jagat
Berman, Daniel S.
Bax, Jeroen J.
Shaw, Leslee J.
Lin, Fay Y.
Min, James K.
Chang, Hyuk‐Jae
author_sort Han, Donghee
collection PubMed
description BACKGROUND: Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography–determined qualitative and quantitative plaque features within a machine learning (ML) framework to determine its performance for predicting RPP. METHODS AND RESULTS: Qualitative and quantitative coronary computed tomography angiography plaque characterization was performed in 1083 patients who underwent serial coronary computed tomography angiography from the PARADIGM (Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging) registry. RPP was defined as an annual progression of percentage atheroma volume ≥1.0%. We employed the following ML models: model 1, clinical variables; model 2, model 1 plus qualitative plaque features; model 3, model 2 plus quantitative plaque features. ML models were compared with the atherosclerotic cardiovascular disease risk score, Duke coronary artery disease score, and a logistic regression statistical model. 224 patients (21%) were identified as RPP. Feature selection in ML identifies that quantitative computed tomography variables were higher‐ranking features, followed by qualitative computed tomography variables and clinical/laboratory variables. ML model 3 exhibited the highest discriminatory performance to identify individuals who would experience RPP when compared with atherosclerotic cardiovascular disease risk score, the other ML models, and the statistical model (area under the receiver operating characteristic curve in ML model 3, 0.83 [95% CI 0.78–0.89], versus atherosclerotic cardiovascular disease risk score, 0.60 [0.52–0.67]; Duke coronary artery disease score, 0.74 [0.68–0.79]; ML model 1, 0.62 [0.55–0.69]; ML model 2, 0.73 [0.67–0.80]; all P<0.001; statistical model, 0.81 [0.75–0.87], P=0.128). CONCLUSIONS: Based on a ML framework, quantitative atherosclerosis characterization has been shown to be the most important feature when compared with clinical, laboratory, and qualitative measures in identifying patients at risk of RPP.
format Online
Article
Text
id pubmed-7335586
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-73355862020-07-08 Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry Han, Donghee Kolli, Kranthi K. Al'Aref, Subhi J. Baskaran, Lohendran van Rosendael, Alexander R. Gransar, Heidi Andreini, Daniele Budoff, Matthew J. Cademartiri, Filippo Chinnaiyan, Kavitha Choi, Jung Hyun Conte, Edoardo Marques, Hugo de Araújo Gonçalves, Pedro Gottlieb, Ilan Hadamitzky, Martin Leipsic, Jonathon A. Maffei, Erica Pontone, Gianluca Raff, Gilbert L. Shin, Sangshoon Kim, Yong‐Jin Lee, Byoung Kwon Chun, Eun Ju Sung, Ji Min Lee, Sang‐Eun Virmani, Renu Samady, Habib Stone, Peter Narula, Jagat Berman, Daniel S. Bax, Jeroen J. Shaw, Leslee J. Lin, Fay Y. Min, James K. Chang, Hyuk‐Jae J Am Heart Assoc Original Research BACKGROUND: Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography–determined qualitative and quantitative plaque features within a machine learning (ML) framework to determine its performance for predicting RPP. METHODS AND RESULTS: Qualitative and quantitative coronary computed tomography angiography plaque characterization was performed in 1083 patients who underwent serial coronary computed tomography angiography from the PARADIGM (Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging) registry. RPP was defined as an annual progression of percentage atheroma volume ≥1.0%. We employed the following ML models: model 1, clinical variables; model 2, model 1 plus qualitative plaque features; model 3, model 2 plus quantitative plaque features. ML models were compared with the atherosclerotic cardiovascular disease risk score, Duke coronary artery disease score, and a logistic regression statistical model. 224 patients (21%) were identified as RPP. Feature selection in ML identifies that quantitative computed tomography variables were higher‐ranking features, followed by qualitative computed tomography variables and clinical/laboratory variables. ML model 3 exhibited the highest discriminatory performance to identify individuals who would experience RPP when compared with atherosclerotic cardiovascular disease risk score, the other ML models, and the statistical model (area under the receiver operating characteristic curve in ML model 3, 0.83 [95% CI 0.78–0.89], versus atherosclerotic cardiovascular disease risk score, 0.60 [0.52–0.67]; Duke coronary artery disease score, 0.74 [0.68–0.79]; ML model 1, 0.62 [0.55–0.69]; ML model 2, 0.73 [0.67–0.80]; all P<0.001; statistical model, 0.81 [0.75–0.87], P=0.128). CONCLUSIONS: Based on a ML framework, quantitative atherosclerosis characterization has been shown to be the most important feature when compared with clinical, laboratory, and qualitative measures in identifying patients at risk of RPP. John Wiley and Sons Inc. 2020-02-22 /pmc/articles/PMC7335586/ /pubmed/32089046 http://dx.doi.org/10.1161/JAHA.119.013958 Text en © 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Research
Han, Donghee
Kolli, Kranthi K.
Al'Aref, Subhi J.
Baskaran, Lohendran
van Rosendael, Alexander R.
Gransar, Heidi
Andreini, Daniele
Budoff, Matthew J.
Cademartiri, Filippo
Chinnaiyan, Kavitha
Choi, Jung Hyun
Conte, Edoardo
Marques, Hugo
de Araújo Gonçalves, Pedro
Gottlieb, Ilan
Hadamitzky, Martin
Leipsic, Jonathon A.
Maffei, Erica
Pontone, Gianluca
Raff, Gilbert L.
Shin, Sangshoon
Kim, Yong‐Jin
Lee, Byoung Kwon
Chun, Eun Ju
Sung, Ji Min
Lee, Sang‐Eun
Virmani, Renu
Samady, Habib
Stone, Peter
Narula, Jagat
Berman, Daniel S.
Bax, Jeroen J.
Shaw, Leslee J.
Lin, Fay Y.
Min, James K.
Chang, Hyuk‐Jae
Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry
title Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry
title_full Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry
title_fullStr Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry
title_full_unstemmed Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry
title_short Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry
title_sort machine learning framework to identify individuals at risk of rapid progression of coronary atherosclerosis: from the paradigm registry
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335586/
https://www.ncbi.nlm.nih.gov/pubmed/32089046
http://dx.doi.org/10.1161/JAHA.119.013958
work_keys_str_mv AT handonghee machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT kollikranthik machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT alarefsubhij machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT baskaranlohendran machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT vanrosendaelalexanderr machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT gransarheidi machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT andreinidaniele machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT budoffmatthewj machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT cademartirifilippo machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT chinnaiyankavitha machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT choijunghyun machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT conteedoardo machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT marqueshugo machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT dearaujogoncalvespedro machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT gottliebilan machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT hadamitzkymartin machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT leipsicjonathona machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT maffeierica machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT pontonegianluca machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT raffgilbertl machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT shinsangshoon machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT kimyongjin machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT leebyoungkwon machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT chuneunju machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT sungjimin machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT leesangeun machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT virmanirenu machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT samadyhabib machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT stonepeter machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT narulajagat machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT bermandaniels machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT baxjeroenj machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT shawlesleej machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT linfayy machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT minjamesk machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry
AT changhyukjae machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry