Cargando…
Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry
BACKGROUND: Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography–determined qualitative and q...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335586/ https://www.ncbi.nlm.nih.gov/pubmed/32089046 http://dx.doi.org/10.1161/JAHA.119.013958 |
_version_ | 1783554169647398912 |
---|---|
author | Han, Donghee Kolli, Kranthi K. Al'Aref, Subhi J. Baskaran, Lohendran van Rosendael, Alexander R. Gransar, Heidi Andreini, Daniele Budoff, Matthew J. Cademartiri, Filippo Chinnaiyan, Kavitha Choi, Jung Hyun Conte, Edoardo Marques, Hugo de Araújo Gonçalves, Pedro Gottlieb, Ilan Hadamitzky, Martin Leipsic, Jonathon A. Maffei, Erica Pontone, Gianluca Raff, Gilbert L. Shin, Sangshoon Kim, Yong‐Jin Lee, Byoung Kwon Chun, Eun Ju Sung, Ji Min Lee, Sang‐Eun Virmani, Renu Samady, Habib Stone, Peter Narula, Jagat Berman, Daniel S. Bax, Jeroen J. Shaw, Leslee J. Lin, Fay Y. Min, James K. Chang, Hyuk‐Jae |
author_facet | Han, Donghee Kolli, Kranthi K. Al'Aref, Subhi J. Baskaran, Lohendran van Rosendael, Alexander R. Gransar, Heidi Andreini, Daniele Budoff, Matthew J. Cademartiri, Filippo Chinnaiyan, Kavitha Choi, Jung Hyun Conte, Edoardo Marques, Hugo de Araújo Gonçalves, Pedro Gottlieb, Ilan Hadamitzky, Martin Leipsic, Jonathon A. Maffei, Erica Pontone, Gianluca Raff, Gilbert L. Shin, Sangshoon Kim, Yong‐Jin Lee, Byoung Kwon Chun, Eun Ju Sung, Ji Min Lee, Sang‐Eun Virmani, Renu Samady, Habib Stone, Peter Narula, Jagat Berman, Daniel S. Bax, Jeroen J. Shaw, Leslee J. Lin, Fay Y. Min, James K. Chang, Hyuk‐Jae |
author_sort | Han, Donghee |
collection | PubMed |
description | BACKGROUND: Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography–determined qualitative and quantitative plaque features within a machine learning (ML) framework to determine its performance for predicting RPP. METHODS AND RESULTS: Qualitative and quantitative coronary computed tomography angiography plaque characterization was performed in 1083 patients who underwent serial coronary computed tomography angiography from the PARADIGM (Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging) registry. RPP was defined as an annual progression of percentage atheroma volume ≥1.0%. We employed the following ML models: model 1, clinical variables; model 2, model 1 plus qualitative plaque features; model 3, model 2 plus quantitative plaque features. ML models were compared with the atherosclerotic cardiovascular disease risk score, Duke coronary artery disease score, and a logistic regression statistical model. 224 patients (21%) were identified as RPP. Feature selection in ML identifies that quantitative computed tomography variables were higher‐ranking features, followed by qualitative computed tomography variables and clinical/laboratory variables. ML model 3 exhibited the highest discriminatory performance to identify individuals who would experience RPP when compared with atherosclerotic cardiovascular disease risk score, the other ML models, and the statistical model (area under the receiver operating characteristic curve in ML model 3, 0.83 [95% CI 0.78–0.89], versus atherosclerotic cardiovascular disease risk score, 0.60 [0.52–0.67]; Duke coronary artery disease score, 0.74 [0.68–0.79]; ML model 1, 0.62 [0.55–0.69]; ML model 2, 0.73 [0.67–0.80]; all P<0.001; statistical model, 0.81 [0.75–0.87], P=0.128). CONCLUSIONS: Based on a ML framework, quantitative atherosclerosis characterization has been shown to be the most important feature when compared with clinical, laboratory, and qualitative measures in identifying patients at risk of RPP. |
format | Online Article Text |
id | pubmed-7335586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73355862020-07-08 Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry Han, Donghee Kolli, Kranthi K. Al'Aref, Subhi J. Baskaran, Lohendran van Rosendael, Alexander R. Gransar, Heidi Andreini, Daniele Budoff, Matthew J. Cademartiri, Filippo Chinnaiyan, Kavitha Choi, Jung Hyun Conte, Edoardo Marques, Hugo de Araújo Gonçalves, Pedro Gottlieb, Ilan Hadamitzky, Martin Leipsic, Jonathon A. Maffei, Erica Pontone, Gianluca Raff, Gilbert L. Shin, Sangshoon Kim, Yong‐Jin Lee, Byoung Kwon Chun, Eun Ju Sung, Ji Min Lee, Sang‐Eun Virmani, Renu Samady, Habib Stone, Peter Narula, Jagat Berman, Daniel S. Bax, Jeroen J. Shaw, Leslee J. Lin, Fay Y. Min, James K. Chang, Hyuk‐Jae J Am Heart Assoc Original Research BACKGROUND: Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography–determined qualitative and quantitative plaque features within a machine learning (ML) framework to determine its performance for predicting RPP. METHODS AND RESULTS: Qualitative and quantitative coronary computed tomography angiography plaque characterization was performed in 1083 patients who underwent serial coronary computed tomography angiography from the PARADIGM (Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging) registry. RPP was defined as an annual progression of percentage atheroma volume ≥1.0%. We employed the following ML models: model 1, clinical variables; model 2, model 1 plus qualitative plaque features; model 3, model 2 plus quantitative plaque features. ML models were compared with the atherosclerotic cardiovascular disease risk score, Duke coronary artery disease score, and a logistic regression statistical model. 224 patients (21%) were identified as RPP. Feature selection in ML identifies that quantitative computed tomography variables were higher‐ranking features, followed by qualitative computed tomography variables and clinical/laboratory variables. ML model 3 exhibited the highest discriminatory performance to identify individuals who would experience RPP when compared with atherosclerotic cardiovascular disease risk score, the other ML models, and the statistical model (area under the receiver operating characteristic curve in ML model 3, 0.83 [95% CI 0.78–0.89], versus atherosclerotic cardiovascular disease risk score, 0.60 [0.52–0.67]; Duke coronary artery disease score, 0.74 [0.68–0.79]; ML model 1, 0.62 [0.55–0.69]; ML model 2, 0.73 [0.67–0.80]; all P<0.001; statistical model, 0.81 [0.75–0.87], P=0.128). CONCLUSIONS: Based on a ML framework, quantitative atherosclerosis characterization has been shown to be the most important feature when compared with clinical, laboratory, and qualitative measures in identifying patients at risk of RPP. John Wiley and Sons Inc. 2020-02-22 /pmc/articles/PMC7335586/ /pubmed/32089046 http://dx.doi.org/10.1161/JAHA.119.013958 Text en © 2020 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Han, Donghee Kolli, Kranthi K. Al'Aref, Subhi J. Baskaran, Lohendran van Rosendael, Alexander R. Gransar, Heidi Andreini, Daniele Budoff, Matthew J. Cademartiri, Filippo Chinnaiyan, Kavitha Choi, Jung Hyun Conte, Edoardo Marques, Hugo de Araújo Gonçalves, Pedro Gottlieb, Ilan Hadamitzky, Martin Leipsic, Jonathon A. Maffei, Erica Pontone, Gianluca Raff, Gilbert L. Shin, Sangshoon Kim, Yong‐Jin Lee, Byoung Kwon Chun, Eun Ju Sung, Ji Min Lee, Sang‐Eun Virmani, Renu Samady, Habib Stone, Peter Narula, Jagat Berman, Daniel S. Bax, Jeroen J. Shaw, Leslee J. Lin, Fay Y. Min, James K. Chang, Hyuk‐Jae Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry |
title | Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry |
title_full | Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry |
title_fullStr | Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry |
title_full_unstemmed | Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry |
title_short | Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry |
title_sort | machine learning framework to identify individuals at risk of rapid progression of coronary atherosclerosis: from the paradigm registry |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335586/ https://www.ncbi.nlm.nih.gov/pubmed/32089046 http://dx.doi.org/10.1161/JAHA.119.013958 |
work_keys_str_mv | AT handonghee machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT kollikranthik machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT alarefsubhij machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT baskaranlohendran machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT vanrosendaelalexanderr machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT gransarheidi machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT andreinidaniele machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT budoffmatthewj machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT cademartirifilippo machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT chinnaiyankavitha machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT choijunghyun machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT conteedoardo machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT marqueshugo machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT dearaujogoncalvespedro machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT gottliebilan machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT hadamitzkymartin machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT leipsicjonathona machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT maffeierica machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT pontonegianluca machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT raffgilbertl machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT shinsangshoon machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT kimyongjin machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT leebyoungkwon machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT chuneunju machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT sungjimin machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT leesangeun machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT virmanirenu machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT samadyhabib machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT stonepeter machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT narulajagat machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT bermandaniels machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT baxjeroenj machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT shawlesleej machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT linfayy machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT minjamesk machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry AT changhyukjae machinelearningframeworktoidentifyindividualsatriskofrapidprogressionofcoronaryatherosclerosisfromtheparadigmregistry |