Cargando…

Evaluation of Microcrystalline Cellulose Derived from Saccharum officinarum L. (Sugarcane) Leaves as a Disintegrant in Tablet Formulations

Purpose: Complete recycling of the crop residues of sugarcane in the Philippines remains to be achieved. This study purposed to derive microcrystalline cellulose (MCC) from sugarcane leaves and test its disintegrating properties in tablet formulation. Methods: Saccharum officinarum L. (sugarcane) le...

Descripción completa

Detalles Bibliográficos
Autor principal: Ann S. Ng, Julie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tabriz University of Medical Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335985/
https://www.ncbi.nlm.nih.gov/pubmed/32665900
http://dx.doi.org/10.34172/apb.2020.050
Descripción
Sumario:Purpose: Complete recycling of the crop residues of sugarcane in the Philippines remains to be achieved. This study purposed to derive microcrystalline cellulose (MCC) from sugarcane leaves and test its disintegrating properties in tablet formulation. Methods: Saccharum officinarum L. (sugarcane) leaves were used to prepare MCC powder. According to the conventional method, the preparation of cellulose powder requires heating the raw material with acid and alkali followed by washing, bleaching, and sieving. Hydrolysis of the bleached product was carried out using hydrochloric acid to obtain MCC powder, and the physicochemical properties of the produced MCC powder were studied including its organoleptic properties, pH value, %loss on drying, %water soluble substances and Fouriertransform infrared (FTIR) spectrum. Results: The resulting powder was evaluated for its disintegrating property in the preparation of blank tablets, which were compared to tablets prepared using commercially available MCC. MCC powder derived from sugarcane leaves had properties at par with commercially available MCC and was in conformance with National Formulary (NF) specifications. Conclusion: Disintegrating properties were also significantly better than the commercially available MCC.