Cargando…

Development and characterization of a fiber optical fluorescence sensor for the online monitoring of biofilms and their microenvironment

The growth of microorganisms on surfaces and interfaces as a biofilm is very common and plays important role in various areas such as material science, biomedicine, or waste treatment among others. Due to their inhomogeneous structure and the variance in the microorganism consortium, the analysis of...

Descripción completa

Detalles Bibliográficos
Autores principales: Schlaugat, Jana, Patzer, Kai, Hentrop, Thorleif, Solle, Dörte, Pepelanova, Iliyana, Schröder, Uwe, Scheper, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336156/
https://www.ncbi.nlm.nih.gov/pubmed/32647504
http://dx.doi.org/10.1002/elsc.201900140
Descripción
Sumario:The growth of microorganisms on surfaces and interfaces as a biofilm is very common and plays important role in various areas such as material science, biomedicine, or waste treatment among others. Due to their inhomogeneous structure and the variance in the microorganism consortium, the analysis of biofilms represents a significant challenge. An online fluorescence sensor was developed that is able to measure the most important biological fluorophores (proteins, nicotinamide adenine dinucleotide, and flavin) in a noninvasive manner in biofilms, e.g. in bioelectrochemical applications. The sensor gives the opportunity to continuously draw conclusions on the metabolic state of the biofilm. The developed sensor has a diameter of 1 mm at the sensor tip and can be moved on and into the biofilm surface. In the first experiment, the measuring range of the sensor and the long‐term stability could be determined and the system applicability was confirmed. In addition, measurements in biofilm‐like structures could be performed. The formation of a wastewater‐based biofilm was monitored using the developed sensor, demonstrating the functionality of the sensor in a proof‐of‐principle experiment.