Cargando…

Decentralized dynamic functional network connectivity: State analysis in collaborative settings

As neuroimaging data increase in complexity and related analytical problems follow suite, more researchers are drawn to collaborative frameworks that leverage data sets from multiple data‐collection sites to balance out the complexity with an increased sample size. Although centralized data‐collecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Baker, Bradley T., Damaraju, Eswar, Silva, Rogers F., Plis, Sergey M., Calhoun, Vince D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336163/
https://www.ncbi.nlm.nih.gov/pubmed/32319193
http://dx.doi.org/10.1002/hbm.24986
Descripción
Sumario:As neuroimaging data increase in complexity and related analytical problems follow suite, more researchers are drawn to collaborative frameworks that leverage data sets from multiple data‐collection sites to balance out the complexity with an increased sample size. Although centralized data‐collection approaches have dominated the collaborative scene, a number of decentralized approaches—those that avoid gathering data at a shared central store—have grown in popularity. We expect the prevalence of decentralized approaches to continue as privacy risks and communication overhead become increasingly important for researchers. In this article, we develop, implement and evaluate a decentralized version of one such widely used tool: dynamic functional network connectivity. Our resulting algorithm, decentralized dynamic functional network connectivity (ddFNC), synthesizes a new, decentralized group independent component analysis algorithm (dgICA) with algorithms for decentralized k‐means clustering. We compare both individual decentralized components and the full resulting decentralized analysis pipeline against centralized counterparts on the same data, and show that both provide comparable performance. Additionally, we perform several experiments which evaluate the communication overhead and convergence behavior of various decentralization strategies and decentralized clustering algorithms. Our analysis indicates that ddFNC is a fine candidate for facilitating decentralized collaboration between neuroimaging researchers, and stands ready for the inclusion of privacy‐enabling modifications, such as differential privacy.