Cargando…
Exponential Decay of Truncated Correlations for the Ising Model in any Dimension for all but the Critical Temperature
The truncated two-point function of the ferromagnetic Ising model on [Formula: see text] ([Formula: see text] ) in its pure phases is proven to decay exponentially fast throughout the ordered regime ([Formula: see text] and [Formula: see text] ). Together with the previously known results, this impl...
Autores principales: | Duminil-Copin, Hugo, Goswami, Subhajit, Raoufi, Aran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336249/ https://www.ncbi.nlm.nih.gov/pubmed/32675826 http://dx.doi.org/10.1007/s00220-019-03633-y |
Ejemplares similares
-
Planar random-cluster model: fractal properties of the critical phase
por: Duminil-Copin, Hugo, et al.
Publicado: (2021) -
Statistical estimation for truncated exponential families
por: Akahira, Masafumi
Publicado: (2017) -
Truncated Weibull–exponential distribution: methods and applications
por: Abbas, Salman, et al.
Publicado: (2023) -
Dimerization and Néel Order in Different Quantum Spin Chains Through a Shared Loop Representation
por: Aizenman, Michael, et al.
Publicado: (2020) -
Half logistic-truncated exponential distribution: Characteristics and applications
por: Gul, Ahtasham, et al.
Publicado: (2023)