Cargando…
Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations
To deal with the huge number of novel protein‐coding variants identified by genome and exome sequencing studies, many computational variant effect predictors (VEPs) have been developed. Such predictors are often trained and evaluated using different variant data sets, making a direct comparison betw...
Autores principales: | Livesey, Benjamin J, Marsh, Joseph A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336272/ https://www.ncbi.nlm.nih.gov/pubmed/32627955 http://dx.doi.org/10.15252/msb.20199380 |
Ejemplares similares
-
Updated benchmarking of variant effect predictors using deep mutational scanning
por: Livesey, Benjamin J, et al.
Publicado: (2023) -
Interpreting protein variant effects with computational predictors and deep mutational scanning
por: Livesey, Benjamin J., et al.
Publicado: (2022) -
Correspondence between functional scores from deep mutational scans and predicted effects on protein stability
por: Gerasimavicius, Lukas, et al.
Publicado: (2023) -
The properties of human disease mutations at protein interfaces
por: Livesey, Benjamin J., et al.
Publicado: (2022) -
Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure
por: Gerasimavicius, Lukas, et al.
Publicado: (2022)