Cargando…

Structural characterization of borneol dehydrogenase from Pseudomonas sp. TCU-HL1

During the microbial degradation of borneol, a bicyclic plant monoterpene, it is first converted into camphor by borneol dehydrogenase (BDH) and then enters a known camphor-degradation pathway. Previously, a recombinant Pseudomonas BDH was found in inclusion bodies when expressed in Escherichia coli...

Descripción completa

Detalles Bibliográficos
Autores principales: Khine, Aye Aye, Chen, Hao-Ping, Huang, Kai-Fa, Ko, Tzu-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336358/
https://www.ncbi.nlm.nih.gov/pubmed/32627746
http://dx.doi.org/10.1107/S2053230X20008584
Descripción
Sumario:During the microbial degradation of borneol, a bicyclic plant monoterpene, it is first converted into camphor by borneol dehydrogenase (BDH) and then enters a known camphor-degradation pathway. Previously, a recombinant Pseudomonas BDH was found in inclusion bodies when expressed in Escherichia coli. After refolding, it was still unstable and was difficult to concentrate. Here, the protein-expression conditions were improved by changing the medium from lysogeny broth to Terrific Broth, yielding a soluble form of the enzyme with higher activity. The protein was crystallized and its 3D structure was determined by X-ray diffraction. Like other known homologues such as quinuclidinone reductase, the protein forms a tetramer with subunits containing Rossmann folds. Structural comparison revealed major differences in the C-terminal helices and the associated loops. It is likely that these regions contain the determinants for substrate recognition.