Cargando…
Drug-target interaction prediction using semi-bipartite graph model and deep learning
BACKGROUND: Identifying drug-target interaction is a key element in drug discovery. In silico prediction of drug-target interaction can speed up the process of identifying unknown interactions between drugs and target proteins. In recent studies, handcrafted features, similarity metrics and machine...
Autores principales: | Eslami Manoochehri, Hafez, Nourani, Mehrdad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336396/ https://www.ncbi.nlm.nih.gov/pubmed/32631230 http://dx.doi.org/10.1186/s12859-020-3518-6 |
Ejemplares similares
-
GraphDTI: A robust deep learning predictor of drug-target interactions from multiple heterogeneous data
por: Liu, Guannan, et al.
Publicado: (2021) -
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Bipartite graph-based collaborative matrix factorization method for predicting miRNA-disease associations
por: Zhou, Feng, et al.
Publicado: (2021) -
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Chen, Jiarui, et al.
Publicado: (2021) -
Drug response prediction using graph representation learning and Laplacian feature selection
por: Xie, Minzhu, et al.
Publicado: (2022)