Cargando…

Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status

BACKGROUND: Combining MRI techniques with machine learning methodology is rapidly gaining attention as a promising method for staging of brain gliomas. This study assesses the diagnostic value of such a framework applied to dynamic susceptibility contrast (DSC)-MRI in classifying treatment-naïve gli...

Descripción completa

Detalles Bibliográficos
Autores principales: Sudre, Carole H., Panovska-Griffiths, Jasmina, Sanverdi, Eser, Brandner, Sebastian, Katsaros, Vasileios K., Stranjalis, George, Pizzini, Francesca B., Ghimenton, Claudio, Surlan-Popovic, Katarina, Avsenik, Jernej, Spampinato, Maria Vittoria, Nigro, Mario, Chatterjee, Arindam R., Attye, Arnaud, Grand, Sylvie, Krainik, Alexandre, Anzalone, Nicoletta, Conte, Gian Marco, Romeo, Valeria, Ugga, Lorenzo, Elefante, Andrea, Ciceri, Elisa Francesca, Guadagno, Elia, Kapsalaki, Eftychia, Roettger, Diana, Gonzalez, Javier, Boutelier, Timothé, Cardoso, M. Jorge, Bisdas, Sotirios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336404/
https://www.ncbi.nlm.nih.gov/pubmed/32631306
http://dx.doi.org/10.1186/s12911-020-01163-5
_version_ 1783554311822770176
author Sudre, Carole H.
Panovska-Griffiths, Jasmina
Sanverdi, Eser
Brandner, Sebastian
Katsaros, Vasileios K.
Stranjalis, George
Pizzini, Francesca B.
Ghimenton, Claudio
Surlan-Popovic, Katarina
Avsenik, Jernej
Spampinato, Maria Vittoria
Nigro, Mario
Chatterjee, Arindam R.
Attye, Arnaud
Grand, Sylvie
Krainik, Alexandre
Anzalone, Nicoletta
Conte, Gian Marco
Romeo, Valeria
Ugga, Lorenzo
Elefante, Andrea
Ciceri, Elisa Francesca
Guadagno, Elia
Kapsalaki, Eftychia
Roettger, Diana
Gonzalez, Javier
Boutelier, Timothé
Cardoso, M. Jorge
Bisdas, Sotirios
author_facet Sudre, Carole H.
Panovska-Griffiths, Jasmina
Sanverdi, Eser
Brandner, Sebastian
Katsaros, Vasileios K.
Stranjalis, George
Pizzini, Francesca B.
Ghimenton, Claudio
Surlan-Popovic, Katarina
Avsenik, Jernej
Spampinato, Maria Vittoria
Nigro, Mario
Chatterjee, Arindam R.
Attye, Arnaud
Grand, Sylvie
Krainik, Alexandre
Anzalone, Nicoletta
Conte, Gian Marco
Romeo, Valeria
Ugga, Lorenzo
Elefante, Andrea
Ciceri, Elisa Francesca
Guadagno, Elia
Kapsalaki, Eftychia
Roettger, Diana
Gonzalez, Javier
Boutelier, Timothé
Cardoso, M. Jorge
Bisdas, Sotirios
author_sort Sudre, Carole H.
collection PubMed
description BACKGROUND: Combining MRI techniques with machine learning methodology is rapidly gaining attention as a promising method for staging of brain gliomas. This study assesses the diagnostic value of such a framework applied to dynamic susceptibility contrast (DSC)-MRI in classifying treatment-naïve gliomas from a multi-center patients into WHO grades II-IV and across their isocitrate dehydrogenase (IDH) mutation status. METHODS: Three hundred thirty-three patients from 6 tertiary centres, diagnosed histologically and molecularly with primary gliomas (IDH-mutant = 151 or IDH-wildtype = 182) were retrospectively identified. Raw DSC-MRI data was post-processed for normalised leakage-corrected relative cerebral blood volume (rCBV) maps. Shape, intensity distribution (histogram) and rotational invariant Haralick texture features over the tumour mask were extracted. Differences in extracted features across glioma grades and mutation status were tested using the Wilcoxon two-sample test. A random-forest algorithm was employed (2-fold cross-validation, 250 repeats) to predict grades or mutation status using the extracted features. RESULTS: Shape, distribution and texture features showed significant differences across mutation status. WHO grade II-III differentiation was mostly driven by shape features while texture and intensity feature were more relevant for the III-IV separation. Increased number of features became significant when differentiating grades further apart from one another. Gliomas were correctly stratified by mutation status in 71% and by grade in 53% of the cases (87% of the gliomas grades predicted with distance less than 1). CONCLUSIONS: Despite large heterogeneity in the multi-center dataset, machine learning assisted DSC-MRI radiomics hold potential to address the inherent variability and presents a promising approach for non-invasive glioma molecular subtyping and grading.
format Online
Article
Text
id pubmed-7336404
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-73364042020-07-07 Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status Sudre, Carole H. Panovska-Griffiths, Jasmina Sanverdi, Eser Brandner, Sebastian Katsaros, Vasileios K. Stranjalis, George Pizzini, Francesca B. Ghimenton, Claudio Surlan-Popovic, Katarina Avsenik, Jernej Spampinato, Maria Vittoria Nigro, Mario Chatterjee, Arindam R. Attye, Arnaud Grand, Sylvie Krainik, Alexandre Anzalone, Nicoletta Conte, Gian Marco Romeo, Valeria Ugga, Lorenzo Elefante, Andrea Ciceri, Elisa Francesca Guadagno, Elia Kapsalaki, Eftychia Roettger, Diana Gonzalez, Javier Boutelier, Timothé Cardoso, M. Jorge Bisdas, Sotirios BMC Med Inform Decis Mak Research Article BACKGROUND: Combining MRI techniques with machine learning methodology is rapidly gaining attention as a promising method for staging of brain gliomas. This study assesses the diagnostic value of such a framework applied to dynamic susceptibility contrast (DSC)-MRI in classifying treatment-naïve gliomas from a multi-center patients into WHO grades II-IV and across their isocitrate dehydrogenase (IDH) mutation status. METHODS: Three hundred thirty-three patients from 6 tertiary centres, diagnosed histologically and molecularly with primary gliomas (IDH-mutant = 151 or IDH-wildtype = 182) were retrospectively identified. Raw DSC-MRI data was post-processed for normalised leakage-corrected relative cerebral blood volume (rCBV) maps. Shape, intensity distribution (histogram) and rotational invariant Haralick texture features over the tumour mask were extracted. Differences in extracted features across glioma grades and mutation status were tested using the Wilcoxon two-sample test. A random-forest algorithm was employed (2-fold cross-validation, 250 repeats) to predict grades or mutation status using the extracted features. RESULTS: Shape, distribution and texture features showed significant differences across mutation status. WHO grade II-III differentiation was mostly driven by shape features while texture and intensity feature were more relevant for the III-IV separation. Increased number of features became significant when differentiating grades further apart from one another. Gliomas were correctly stratified by mutation status in 71% and by grade in 53% of the cases (87% of the gliomas grades predicted with distance less than 1). CONCLUSIONS: Despite large heterogeneity in the multi-center dataset, machine learning assisted DSC-MRI radiomics hold potential to address the inherent variability and presents a promising approach for non-invasive glioma molecular subtyping and grading. BioMed Central 2020-07-06 /pmc/articles/PMC7336404/ /pubmed/32631306 http://dx.doi.org/10.1186/s12911-020-01163-5 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Sudre, Carole H.
Panovska-Griffiths, Jasmina
Sanverdi, Eser
Brandner, Sebastian
Katsaros, Vasileios K.
Stranjalis, George
Pizzini, Francesca B.
Ghimenton, Claudio
Surlan-Popovic, Katarina
Avsenik, Jernej
Spampinato, Maria Vittoria
Nigro, Mario
Chatterjee, Arindam R.
Attye, Arnaud
Grand, Sylvie
Krainik, Alexandre
Anzalone, Nicoletta
Conte, Gian Marco
Romeo, Valeria
Ugga, Lorenzo
Elefante, Andrea
Ciceri, Elisa Francesca
Guadagno, Elia
Kapsalaki, Eftychia
Roettger, Diana
Gonzalez, Javier
Boutelier, Timothé
Cardoso, M. Jorge
Bisdas, Sotirios
Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
title Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
title_full Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
title_fullStr Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
title_full_unstemmed Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
title_short Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
title_sort machine learning assisted dsc-mri radiomics as a tool for glioma classification by grade and mutation status
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336404/
https://www.ncbi.nlm.nih.gov/pubmed/32631306
http://dx.doi.org/10.1186/s12911-020-01163-5
work_keys_str_mv AT sudrecaroleh machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT panovskagriffithsjasmina machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT sanverdieser machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT brandnersebastian machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT katsarosvasileiosk machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT stranjalisgeorge machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT pizzinifrancescab machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT ghimentonclaudio machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT surlanpopovickatarina machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT avsenikjernej machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT spampinatomariavittoria machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT nigromario machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT chatterjeearindamr machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT attyearnaud machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT grandsylvie machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT krainikalexandre machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT anzalonenicoletta machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT contegianmarco machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT romeovaleria machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT uggalorenzo machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT elefanteandrea machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT cicerielisafrancesca machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT guadagnoelia machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT kapsalakieftychia machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT roettgerdiana machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT gonzalezjavier machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT bouteliertimothe machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT cardosomjorge machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus
AT bisdassotirios machinelearningassisteddscmriradiomicsasatoolforgliomaclassificationbygradeandmutationstatus