Cargando…
Comparison of smartphone-based retinal imaging systems for diabetic retinopathy detection using deep learning
BACKGROUND: Diabetic retinopathy (DR), the most common cause of vision loss, is caused by damage to the small blood vessels in the retina. If untreated, it may result in varying degrees of vision loss and even blindness. Since DR is a silent disease that may cause no symptoms or only mild vision pro...
Autores principales: | Karakaya, Mahmut, Hacisoftaoglu, Recep E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336606/ https://www.ncbi.nlm.nih.gov/pubmed/32631221 http://dx.doi.org/10.1186/s12859-020-03587-2 |
Ejemplares similares
-
Transforming Retinal Photographs to Entropy Images in Deep Learning to Improve Automated Detection for Diabetic Retinopathy
por: Lin, Gen-Min, et al.
Publicado: (2018) -
Accuracy of the smartphone-based nonmydriatic retinal camera in the detection of sight-threatening diabetic retinopathy
por: Prathiba, Vijayaraghavan, et al.
Publicado: (2020) -
Validation of Smartphone Based Retinal Photography for Diabetic Retinopathy Screening
por: Rajalakshmi, Ramachandran, et al.
Publicado: (2015) -
Automatic Detection of Diabetic Retinopathy in Retinal Fundus Photographs Based on Deep Learning Algorithm
por: Li, Feng, et al.
Publicado: (2019) -
Automated detection of diabetic retinopathy in retinal images
por: Valverde, Carmen, et al.
Publicado: (2016)