Cargando…
MASS: predict the global qualities of individual protein models using random forests and novel statistical potentials
BACKGROUND: Protein model quality assessment (QA) is an essential procedure in protein structure prediction. QA methods can predict the qualities of protein models and identify good models from decoys. Clustering-based methods need a certain number of models as input. However, if a pool of models ar...
Autores principales: | Liu, Tong, Wang, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336608/ https://www.ncbi.nlm.nih.gov/pubmed/32631256 http://dx.doi.org/10.1186/s12859-020-3383-3 |
Ejemplares similares
-
Random Forests for Global and Regional Crop Yield Predictions
por: Jeong, Jig Han, et al.
Publicado: (2016) -
Predicting protein residue-residue contacts using random forests and deep networks
por: Luttrell, Joseph, et al.
Publicado: (2019) -
Global Patterns and Predictions of Seafloor Biomass Using Random Forests
por: Wei, Chih-Lin, et al.
Publicado: (2010) -
Predicting host tropism of influenza A virus proteins using random forest
por: Eng, Christine LP, et al.
Publicado: (2014) -
Random Forest-Based Protein Model Quality Assessment (RFMQA) Using Structural Features and Potential Energy Terms
por: Manavalan, Balachandran, et al.
Publicado: (2014)