Cargando…
Quasi-linear Cox proportional hazards model with cross- L(1) penalty
BACKGROUND: To accurately predict the response to treatment, we need a stable and effective risk score that can be calculated from patient characteristics. When we evaluate such risks from time-to-event data with right-censoring, Cox’s proportional hazards model is the most popular for estimating th...
Autores principales: | Omae, Katsuhiro, Eguchi, Shinto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336640/ https://www.ncbi.nlm.nih.gov/pubmed/32631280 http://dx.doi.org/10.1186/s12874-020-01063-2 |
Ejemplares similares
-
Quasi-linear score for capturing heterogeneous structure in biomarkers
por: Omae, Katsuhiro, et al.
Publicado: (2017) -
Tests for the proportional hazards assumption in the Cox model
por: Reiersølmoen, L, et al.
Publicado: (2001) -
Improving the Robustness of Variable Selection and Predictive Performance of Regularized Generalized Linear Models and Cox Proportional Hazard Models
por: Hong, Feng, et al.
Publicado: (2023) -
On Cox proportional hazards model performance under different sampling schemes
por: Samawi, Hani, et al.
Publicado: (2023) -
Sparse signals recovered by non-convex penalty in quasi-linear systems
por: Cui, Angang, et al.
Publicado: (2018)