Cargando…

Missense NR2F1 variant in monozygotic twins affected with the Bosch–Boonstra–Schaaf optic atrophy syndrome

BACKGROUND: The Bosch‐Boonstra‐Schaaf optic atrophy syndrome (BBSOAS) is an autosomal‐dominant disorder (OMIM615722) mostly characterized by optic atrophy and/or hypoplasia, mild intellectual disability, hypotonia, seizures/infantile epilepsy. This disorder is caused by loss‐of‐function alterations...

Descripción completa

Detalles Bibliográficos
Autores principales: Mio, Catia, Fogolari, Federico, Pezzoli, Laura, D’Elia, Angela V., Iascone, Maria, Damante, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336747/
https://www.ncbi.nlm.nih.gov/pubmed/32412696
http://dx.doi.org/10.1002/mgg3.1278
_version_ 1783554381310853120
author Mio, Catia
Fogolari, Federico
Pezzoli, Laura
D’Elia, Angela V.
Iascone, Maria
Damante, Giuseppe
author_facet Mio, Catia
Fogolari, Federico
Pezzoli, Laura
D’Elia, Angela V.
Iascone, Maria
Damante, Giuseppe
author_sort Mio, Catia
collection PubMed
description BACKGROUND: The Bosch‐Boonstra‐Schaaf optic atrophy syndrome (BBSOAS) is an autosomal‐dominant disorder (OMIM615722) mostly characterized by optic atrophy and/or hypoplasia, mild intellectual disability, hypotonia, seizures/infantile epilepsy. This disorder is caused by loss‐of‐function alterations of NR2F1 (i.e., either whole gene deletions or single nucleotide variants) and, to date, 40 patients have been identified with deletions or mutations in this gene. Here we describe two monozygotic twins harboring a de novo missense variant in the DNA‐binding domain of NR2F1 (c.313G>A, p.Gly105Ser), with well‐characterized features associated to BBSOAS. METHODS: Patients’ DNA was analyzed by exome sequencing identifying the missense variant c.313G>A in NR2F1 (NM_005654.4). Furthermore, molecular modeling was performed to evaluate putative differences in DNA binding between wild‐type and mutated NR2F1. RESULTS: The missense variant is predicted to be likely pathogenetic following the ACMG (American College of Medical Genetics and Genomics)/AMP (Association for Molecular Pathology) guidelines. Indeed, dynamic simulation experiments highlighted that the Gly105Ser substitution let the formation of a hydrogen bond between the S105 side chain and R142 and a base (G5) of the DNA sequence, allowing us to hypothesize that the G105 residue might be evolutionary conserved due to the absence of a side chain, besides glycine conformational features. Therefore, the G105S variation seems to cause a stiffening and a possible deformation in the protein‐DNA complex due to the interaction of residues R142‐S105 and G5 on the DNA, compared to the wild‐type. CONCLUSION: In summary, we described two monozygotic twins harboring a novel Gly105Ser mutation in NR2F1 DNA binding domain, displaying the classical phenotype of BBSOAS‐affected patients. Our computational data suggest a dominant negative effect of this newly characterized missense variant. To date, this is the first genetic report analyzing in silico structural consequences of NR2F1 Gly105Ser substitution.
format Online
Article
Text
id pubmed-7336747
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-73367472020-07-08 Missense NR2F1 variant in monozygotic twins affected with the Bosch–Boonstra–Schaaf optic atrophy syndrome Mio, Catia Fogolari, Federico Pezzoli, Laura D’Elia, Angela V. Iascone, Maria Damante, Giuseppe Mol Genet Genomic Med Clinical Reports BACKGROUND: The Bosch‐Boonstra‐Schaaf optic atrophy syndrome (BBSOAS) is an autosomal‐dominant disorder (OMIM615722) mostly characterized by optic atrophy and/or hypoplasia, mild intellectual disability, hypotonia, seizures/infantile epilepsy. This disorder is caused by loss‐of‐function alterations of NR2F1 (i.e., either whole gene deletions or single nucleotide variants) and, to date, 40 patients have been identified with deletions or mutations in this gene. Here we describe two monozygotic twins harboring a de novo missense variant in the DNA‐binding domain of NR2F1 (c.313G>A, p.Gly105Ser), with well‐characterized features associated to BBSOAS. METHODS: Patients’ DNA was analyzed by exome sequencing identifying the missense variant c.313G>A in NR2F1 (NM_005654.4). Furthermore, molecular modeling was performed to evaluate putative differences in DNA binding between wild‐type and mutated NR2F1. RESULTS: The missense variant is predicted to be likely pathogenetic following the ACMG (American College of Medical Genetics and Genomics)/AMP (Association for Molecular Pathology) guidelines. Indeed, dynamic simulation experiments highlighted that the Gly105Ser substitution let the formation of a hydrogen bond between the S105 side chain and R142 and a base (G5) of the DNA sequence, allowing us to hypothesize that the G105 residue might be evolutionary conserved due to the absence of a side chain, besides glycine conformational features. Therefore, the G105S variation seems to cause a stiffening and a possible deformation in the protein‐DNA complex due to the interaction of residues R142‐S105 and G5 on the DNA, compared to the wild‐type. CONCLUSION: In summary, we described two monozygotic twins harboring a novel Gly105Ser mutation in NR2F1 DNA binding domain, displaying the classical phenotype of BBSOAS‐affected patients. Our computational data suggest a dominant negative effect of this newly characterized missense variant. To date, this is the first genetic report analyzing in silico structural consequences of NR2F1 Gly105Ser substitution. John Wiley and Sons Inc. 2020-05-15 /pmc/articles/PMC7336747/ /pubmed/32412696 http://dx.doi.org/10.1002/mgg3.1278 Text en © 2020 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Clinical Reports
Mio, Catia
Fogolari, Federico
Pezzoli, Laura
D’Elia, Angela V.
Iascone, Maria
Damante, Giuseppe
Missense NR2F1 variant in monozygotic twins affected with the Bosch–Boonstra–Schaaf optic atrophy syndrome
title Missense NR2F1 variant in monozygotic twins affected with the Bosch–Boonstra–Schaaf optic atrophy syndrome
title_full Missense NR2F1 variant in monozygotic twins affected with the Bosch–Boonstra–Schaaf optic atrophy syndrome
title_fullStr Missense NR2F1 variant in monozygotic twins affected with the Bosch–Boonstra–Schaaf optic atrophy syndrome
title_full_unstemmed Missense NR2F1 variant in monozygotic twins affected with the Bosch–Boonstra–Schaaf optic atrophy syndrome
title_short Missense NR2F1 variant in monozygotic twins affected with the Bosch–Boonstra–Schaaf optic atrophy syndrome
title_sort missense nr2f1 variant in monozygotic twins affected with the bosch–boonstra–schaaf optic atrophy syndrome
topic Clinical Reports
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336747/
https://www.ncbi.nlm.nih.gov/pubmed/32412696
http://dx.doi.org/10.1002/mgg3.1278
work_keys_str_mv AT miocatia missensenr2f1variantinmonozygotictwinsaffectedwiththeboschboonstraschaafopticatrophysyndrome
AT fogolarifederico missensenr2f1variantinmonozygotictwinsaffectedwiththeboschboonstraschaafopticatrophysyndrome
AT pezzolilaura missensenr2f1variantinmonozygotictwinsaffectedwiththeboschboonstraschaafopticatrophysyndrome
AT deliaangelav missensenr2f1variantinmonozygotictwinsaffectedwiththeboschboonstraschaafopticatrophysyndrome
AT iasconemaria missensenr2f1variantinmonozygotictwinsaffectedwiththeboschboonstraschaafopticatrophysyndrome
AT damantegiuseppe missensenr2f1variantinmonozygotictwinsaffectedwiththeboschboonstraschaafopticatrophysyndrome