Cargando…
IEEE Committee on Man and Radiation—COMAR Technical Information Statement: Health and Safety Issues Concerning Exposure of the General Public to Electromagnetic Energy from 5G Wireless Communications Networks
This COMAR Technical Information Statement (TIS) addresses health and safety issues concerning exposure of the general public to radiofrequency (RF) fields from 5G wireless communications networks, the expansion of which started on a large scale in 2018 to 2019. 5G technology can transmit much great...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337122/ https://www.ncbi.nlm.nih.gov/pubmed/32576739 http://dx.doi.org/10.1097/HP.0000000000001301 |
Sumario: | This COMAR Technical Information Statement (TIS) addresses health and safety issues concerning exposure of the general public to radiofrequency (RF) fields from 5G wireless communications networks, the expansion of which started on a large scale in 2018 to 2019. 5G technology can transmit much greater amounts of data at much higher speeds for a vastly expanded array of applications compared with preceding 2-4G systems; this is due, in part, to using the greater bandwidth available at much higher frequencies than those used by most existing networks. Although the 5G engineering standard may be deployed for operating networks currently using frequencies extending from 100s to 1,000s of MHz, it can also operate in the 10s of GHz where the wavelengths are 10 mm or less, the so-called millimeter wave (MMW) band. Until now, such fields were found in a limited number of applications (e.g., airport scanners, automotive collision avoidance systems, perimeter surveillance radar), but the rapid expansion of 5G will produce a more ubiquitous presence of MMW in the environment. While some 5G signals will originate from small antennas placed on existing base stations, most will be deployed with some key differences relative to typical transmissions from 2-4G base stations. Because MMW do not penetrate foliage and building materials as well as signals at lower frequencies, the networks will require “densification,” the installation of many lower power transmitters (often called “small cells” located mainly on buildings and utility poles) to provide for effective indoor coverage. Also, “beamforming” antennas on some 5G systems will transmit one or more signals directed to individual users as they move about, thus limiting exposures to non-users. In this paper, COMAR notes the following perspectives to address concerns expressed about possible health effects of RF field exposure from 5G technology. First, unlike lower frequency fields, MMW do not penetrate beyond the outer skin layers and thus do not expose inner tissues to MMW. Second, current research indicates that overall levels of exposure to RF are unlikely to be significantly altered by 5G, and exposure will continue to originate mostly from the “uplink” signals from one’s own device (as they do now). Third, exposure levels in publicly accessible spaces will remain well below exposure limits established by international guideline and standard setting organizations, including ICNIRP and IEEE. Finally, so long as exposures remain below established guidelines, the research results to date do not support a determination that adverse health effects are associated with RF exposures, including those from 5G systems. While it is acknowledged that the scientific literature on MMW biological effect research is more limited than that for lower frequencies, we also note that it is of mixed quality and stress that future research should use appropriate precautions to enhance validity. The authorship of this paper includes a physician/biologist, epidemiologist, engineers, and physical scientists working voluntarily and collaboratively on a consensus basis. |
---|