Cargando…
Allele combinations of maturity genes E1-E4 affect adaptation of soybean to diverse geographic regions and farming systems in China
Appropriate flowering and maturity time are important for soybean production. Four maturity genes E1, E2, E3 and E4 have been molecularly identified and found to play major roles in the control of flowering and maturity of soybean. Here, to further investigate the effect of different allele combinat...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337298/ https://www.ncbi.nlm.nih.gov/pubmed/32628713 http://dx.doi.org/10.1371/journal.pone.0235397 |
Sumario: | Appropriate flowering and maturity time are important for soybean production. Four maturity genes E1, E2, E3 and E4 have been molecularly identified and found to play major roles in the control of flowering and maturity of soybean. Here, to further investigate the effect of different allele combinations of E1-E4, we performed Kompetitive Allele Specific PCR (KASP) assays based on single nucleotide polymorphisms (SNPs) at these four E loci, and genotyped E1-E4 genes across 308 Chinese cultivars with a wide range of maturity groups. In total, twenty-one allele combinations for E1-E4 genes were identified across these Chinese cultivars. Various combinations of mutations at four E loci gave rise to the diversity of flowering and maturity time, which were associated with the adaptation of soybean cultivars to diverse geographic regions and farming systems. In particular, the cultivars with mutations at all four E loci reached flowering and maturity very early, and adapted to high-latitude cold regions. The allele combinations e1-as/e2-ns/e3-tr/E4, E1/e2-ns/E3/E4 and E1/E2/E3/E4 played important roles in the Northeast China, Huang-Huai-Hai (HHH) Rivers Valley and South China regions, respectively. Notably, E1 and E2, especially E2, affected flowering and maturity time of soybean significantly. Our study will be beneficial for germplasm evaluation, cultivar improvement and regionalization of cultivation in soybean production. |
---|