Cargando…
A deep learning approach to predict visual field using optical coherence tomography
We developed a deep learning architecture based on Inception V3 to predict visual field using optical coherence tomography (OCT) imaging and evaluated its performance. Two OCT images, macular ganglion cell-inner plexiform layer (mGCIPL) and peripapillary retinal nerve fibre layer (pRNFL) thicknesses...
Autores principales: | Park, Keunheung, Kim, Jinmi, Lee, Jiwoong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337305/ https://www.ncbi.nlm.nih.gov/pubmed/32628672 http://dx.doi.org/10.1371/journal.pone.0234902 |
Ejemplares similares
-
Visual Field Inference From Optical Coherence Tomography Using Deep Learning Algorithms: A Comparison Between Devices
por: Shin, Jonghoon, et al.
Publicado: (2021) -
Visual Field Prediction using Recurrent Neural Network
por: Park, Keunheung, et al.
Publicado: (2019) -
Measurement of macular structure-function relationships using spectral domain-optical coherence tomography (SD-OCT) and pattern electroretinograms (PERG)
por: Park, Keunheung, et al.
Publicado: (2017) -
Correction: Measurement of macular structure-function relationships using spectral domain-optical coherence tomography (SD-OCT) and pattern electroretinograms (PERG)
por: Park, Keunheung, et al.
Publicado: (2017) -
Author Correction: Visual Field Prediction using Recurrent Neural Network
por: Park, Keunheung, et al.
Publicado: (2019)