Cargando…
Mobility restrictions for the control of epidemics: When do they work?
BACKGROUND: Mobility restrictions—trade and travel bans, border closures and, in extreme cases, area quarantines or cordons sanitaires—are among the most widely used measures to control infectious diseases. Restrictions of this kind were important in the response to epidemics of SARS (2003), H1N1 in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337314/ https://www.ncbi.nlm.nih.gov/pubmed/32628716 http://dx.doi.org/10.1371/journal.pone.0235731 |
_version_ | 1783554484567277568 |
---|---|
author | Espinoza, Baltazar Castillo-Chavez, Carlos Perrings, Charles |
author_facet | Espinoza, Baltazar Castillo-Chavez, Carlos Perrings, Charles |
author_sort | Espinoza, Baltazar |
collection | PubMed |
description | BACKGROUND: Mobility restrictions—trade and travel bans, border closures and, in extreme cases, area quarantines or cordons sanitaires—are among the most widely used measures to control infectious diseases. Restrictions of this kind were important in the response to epidemics of SARS (2003), H1N1 influenza (2009), Ebola (2014) and, currently in the containment of the ongoing COVID-19 pandemic. However, they do not always work as expected. METHODS: To determine when mobility restrictions reduce the size of an epidemic, we use a model of disease transmission within and between economically heterogeneous locally connected communities. One community comprises a low-risk, low-density population with access to effective medical resources. The other comprises a high-risk, high-density population without access to effective medical resources. FINDINGS: Unrestricted mobility between the two risk communities increases the number of secondary cases in the low-risk community but reduces the overall epidemic size. By contrast, the imposition of a cordon sanitaire around the high-risk community reduces the number of secondary infections in the low-risk community but increases the overall epidemic size. INTERPRETATION: Mobility restrictions may not be an effective policy for controlling the spread of an infectious disease if it is assessed by the overall final epidemic size. Patterns of mobility established through the independent mobility and trade decisions of people in both communities may be sufficient to contain epidemics. |
format | Online Article Text |
id | pubmed-7337314 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-73373142020-07-16 Mobility restrictions for the control of epidemics: When do they work? Espinoza, Baltazar Castillo-Chavez, Carlos Perrings, Charles PLoS One Research Article BACKGROUND: Mobility restrictions—trade and travel bans, border closures and, in extreme cases, area quarantines or cordons sanitaires—are among the most widely used measures to control infectious diseases. Restrictions of this kind were important in the response to epidemics of SARS (2003), H1N1 influenza (2009), Ebola (2014) and, currently in the containment of the ongoing COVID-19 pandemic. However, they do not always work as expected. METHODS: To determine when mobility restrictions reduce the size of an epidemic, we use a model of disease transmission within and between economically heterogeneous locally connected communities. One community comprises a low-risk, low-density population with access to effective medical resources. The other comprises a high-risk, high-density population without access to effective medical resources. FINDINGS: Unrestricted mobility between the two risk communities increases the number of secondary cases in the low-risk community but reduces the overall epidemic size. By contrast, the imposition of a cordon sanitaire around the high-risk community reduces the number of secondary infections in the low-risk community but increases the overall epidemic size. INTERPRETATION: Mobility restrictions may not be an effective policy for controlling the spread of an infectious disease if it is assessed by the overall final epidemic size. Patterns of mobility established through the independent mobility and trade decisions of people in both communities may be sufficient to contain epidemics. Public Library of Science 2020-07-06 /pmc/articles/PMC7337314/ /pubmed/32628716 http://dx.doi.org/10.1371/journal.pone.0235731 Text en © 2020 Espinoza et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Espinoza, Baltazar Castillo-Chavez, Carlos Perrings, Charles Mobility restrictions for the control of epidemics: When do they work? |
title | Mobility restrictions for the control of epidemics: When do they work? |
title_full | Mobility restrictions for the control of epidemics: When do they work? |
title_fullStr | Mobility restrictions for the control of epidemics: When do they work? |
title_full_unstemmed | Mobility restrictions for the control of epidemics: When do they work? |
title_short | Mobility restrictions for the control of epidemics: When do they work? |
title_sort | mobility restrictions for the control of epidemics: when do they work? |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337314/ https://www.ncbi.nlm.nih.gov/pubmed/32628716 http://dx.doi.org/10.1371/journal.pone.0235731 |
work_keys_str_mv | AT espinozabaltazar mobilityrestrictionsforthecontrolofepidemicswhendotheywork AT castillochavezcarlos mobilityrestrictionsforthecontrolofepidemicswhendotheywork AT perringscharles mobilityrestrictionsforthecontrolofepidemicswhendotheywork |