Cargando…
SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome
SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and replication, which depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address t...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337393/ https://www.ncbi.nlm.nih.gov/pubmed/32637963 http://dx.doi.org/10.1101/2020.06.27.175430 |
_version_ | 1783554500212031488 |
---|---|
author | Zimmerman, Maxwell I. Porter, Justin R. Ward, Michael D. Singh, Sukrit Vithani, Neha Meller, Artur Mallimadugula, Upasana L. Kuhn, Catherine E. Borowsky, Jonathan H. Wiewiora, Rafal P. Hurley, Matthew F. D. Harbison, Aoife M Fogarty, Carl A Coffland, Joseph E. Fadda, Elisa Voelz, Vincent A. Chodera, John D. Bowman, Gregory R. |
author_facet | Zimmerman, Maxwell I. Porter, Justin R. Ward, Michael D. Singh, Sukrit Vithani, Neha Meller, Artur Mallimadugula, Upasana L. Kuhn, Catherine E. Borowsky, Jonathan H. Wiewiora, Rafal P. Hurley, Matthew F. D. Harbison, Aoife M Fogarty, Carl A Coffland, Joseph E. Fadda, Elisa Voelz, Vincent A. Chodera, John D. Bowman, Gregory R. |
author_sort | Zimmerman, Maxwell I. |
collection | PubMed |
description | SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and replication, which depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate an unprecedented 0.1 seconds of the viral proteome. Our simulations capture dramatic opening of the apo Spike complex, far beyond that seen experimentally, which explains and successfully predicts the existence of ‘cryptic’ epitopes. Different Spike homologues modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also observe dramatic conformational changes across the proteome, which reveal over 50 ‘cryptic’ pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas. |
format | Online Article Text |
id | pubmed-7337393 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-73373932020-07-07 SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome Zimmerman, Maxwell I. Porter, Justin R. Ward, Michael D. Singh, Sukrit Vithani, Neha Meller, Artur Mallimadugula, Upasana L. Kuhn, Catherine E. Borowsky, Jonathan H. Wiewiora, Rafal P. Hurley, Matthew F. D. Harbison, Aoife M Fogarty, Carl A Coffland, Joseph E. Fadda, Elisa Voelz, Vincent A. Chodera, John D. Bowman, Gregory R. bioRxiv Article SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and replication, which depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate an unprecedented 0.1 seconds of the viral proteome. Our simulations capture dramatic opening of the apo Spike complex, far beyond that seen experimentally, which explains and successfully predicts the existence of ‘cryptic’ epitopes. Different Spike homologues modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also observe dramatic conformational changes across the proteome, which reveal over 50 ‘cryptic’ pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas. Cold Spring Harbor Laboratory 2020-10-07 /pmc/articles/PMC7337393/ /pubmed/32637963 http://dx.doi.org/10.1101/2020.06.27.175430 Text en http://creativecommons.org/licenses/by/4.0/It is made available under a CC-BY 4.0 International license (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Zimmerman, Maxwell I. Porter, Justin R. Ward, Michael D. Singh, Sukrit Vithani, Neha Meller, Artur Mallimadugula, Upasana L. Kuhn, Catherine E. Borowsky, Jonathan H. Wiewiora, Rafal P. Hurley, Matthew F. D. Harbison, Aoife M Fogarty, Carl A Coffland, Joseph E. Fadda, Elisa Voelz, Vincent A. Chodera, John D. Bowman, Gregory R. SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome |
title | SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome |
title_full | SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome |
title_fullStr | SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome |
title_full_unstemmed | SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome |
title_short | SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome |
title_sort | sars-cov-2 simulations go exascale to capture spike opening and reveal cryptic pockets across the proteome |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337393/ https://www.ncbi.nlm.nih.gov/pubmed/32637963 http://dx.doi.org/10.1101/2020.06.27.175430 |
work_keys_str_mv | AT zimmermanmaxwelli sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT porterjustinr sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT wardmichaeld sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT singhsukrit sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT vithanineha sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT mellerartur sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT mallimadugulaupasanal sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT kuhncatherinee sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT borowskyjonathanh sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT wiewiorarafalp sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT hurleymatthewfd sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT harbisonaoifem sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT fogartycarla sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT cofflandjosephe sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT faddaelisa sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT voelzvincenta sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT choderajohnd sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome AT bowmangregoryr sarscov2simulationsgoexascaletocapturespikeopeningandrevealcrypticpocketsacrosstheproteome |