Cargando…
Learning to Identify Severe Maternal Morbidity from Electronic Health Records
Severe maternal morbidity (SMM) is broadly defined as significant complications in pregnancy that have an adverse effect on women’s health. Identifying women who experience SMM and reviewing their obstetric care can assist healthcare organizations in recognizing risk factors and best practices for m...
Autores principales: | Gao, Cheng, Osmundson, Sarah, Yan, Xiaowei, Edwards, Digna Velez, Malin, Bradley A., Chen, You |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337420/ https://www.ncbi.nlm.nih.gov/pubmed/31437902 http://dx.doi.org/10.3233/SHTI190200 |
Ejemplares similares
-
Leveraging Electronic Health Records to Learn Progression Path for Severe Maternal Morbidity
por: Gao, Cheng, et al.
Publicado: (2019) -
Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records
por: Li, Thomas, et al.
Publicado: (2018) -
Predicting Length of Stay for Obstetric Patients via Electronic Medical Records
por: Gao, Cheng, et al.
Publicado: (2017) -
Leveraging electronic health record data for endometriosis research
por: Penrod, Nadia, et al.
Publicado: (2023) -
Telehealth Use in the COVID-19 Pandemic: A Retrospective Study of Prenatal Care
por: Gao, Cheng, et al.
Publicado: (2022)