Cargando…

A modified lysosomal organelle mediates nonlytic egress of reovirus

Mammalian orthoreoviruses (reoviruses) are nonenveloped viruses that replicate in cytoplasmic membranous organelles called viral inclusions (VIs) where progeny virions are assembled. To better understand cellular routes of nonlytic reovirus exit, we imaged sites of virus egress in infected, nonpolar...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández de Castro, Isabel, Tenorio, Raquel, Ortega-González, Paula, Knowlton, Jonathan J., Zamora, Paula F., Lee, Christopher H., Fernández, José J., Dermody, Terence S., Risco, Cristina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337502/
https://www.ncbi.nlm.nih.gov/pubmed/32356864
http://dx.doi.org/10.1083/jcb.201910131
_version_ 1783554526753587200
author Fernández de Castro, Isabel
Tenorio, Raquel
Ortega-González, Paula
Knowlton, Jonathan J.
Zamora, Paula F.
Lee, Christopher H.
Fernández, José J.
Dermody, Terence S.
Risco, Cristina
author_facet Fernández de Castro, Isabel
Tenorio, Raquel
Ortega-González, Paula
Knowlton, Jonathan J.
Zamora, Paula F.
Lee, Christopher H.
Fernández, José J.
Dermody, Terence S.
Risco, Cristina
author_sort Fernández de Castro, Isabel
collection PubMed
description Mammalian orthoreoviruses (reoviruses) are nonenveloped viruses that replicate in cytoplasmic membranous organelles called viral inclusions (VIs) where progeny virions are assembled. To better understand cellular routes of nonlytic reovirus exit, we imaged sites of virus egress in infected, nonpolarized human brain microvascular endothelial cells (HBMECs) and observed one or two distinct egress zones per cell at the basal surface. Transmission electron microscopy and 3D electron tomography (ET) of the egress zones revealed clusters of virions within membrane-bound structures, which we term membranous carriers (MCs), approaching and fusing with the plasma membrane. These virion-containing MCs emerged from larger, LAMP-1–positive membranous organelles that are morphologically compatible with lysosomes. We call these structures sorting organelles (SOs). Reovirus infection induces an increase in the number and size of lysosomes and modifies the pH of these organelles from ∼4.5–5 to ∼6.1 after recruitment to VIs and before incorporation of virions. ET of VI–SO–MC interfaces demonstrated that these compartments are connected by membrane-fusion points, through which mature virions are transported. Collectively, our results show that reovirus uses a previously undescribed, membrane-engaged, nonlytic egress mechanism and highlights a potential new target for therapeutic intervention.
format Online
Article
Text
id pubmed-7337502
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-73375022021-01-06 A modified lysosomal organelle mediates nonlytic egress of reovirus Fernández de Castro, Isabel Tenorio, Raquel Ortega-González, Paula Knowlton, Jonathan J. Zamora, Paula F. Lee, Christopher H. Fernández, José J. Dermody, Terence S. Risco, Cristina J Cell Biol Article Mammalian orthoreoviruses (reoviruses) are nonenveloped viruses that replicate in cytoplasmic membranous organelles called viral inclusions (VIs) where progeny virions are assembled. To better understand cellular routes of nonlytic reovirus exit, we imaged sites of virus egress in infected, nonpolarized human brain microvascular endothelial cells (HBMECs) and observed one or two distinct egress zones per cell at the basal surface. Transmission electron microscopy and 3D electron tomography (ET) of the egress zones revealed clusters of virions within membrane-bound structures, which we term membranous carriers (MCs), approaching and fusing with the plasma membrane. These virion-containing MCs emerged from larger, LAMP-1–positive membranous organelles that are morphologically compatible with lysosomes. We call these structures sorting organelles (SOs). Reovirus infection induces an increase in the number and size of lysosomes and modifies the pH of these organelles from ∼4.5–5 to ∼6.1 after recruitment to VIs and before incorporation of virions. ET of VI–SO–MC interfaces demonstrated that these compartments are connected by membrane-fusion points, through which mature virions are transported. Collectively, our results show that reovirus uses a previously undescribed, membrane-engaged, nonlytic egress mechanism and highlights a potential new target for therapeutic intervention. Rockefeller University Press 2020-05-01 /pmc/articles/PMC7337502/ /pubmed/32356864 http://dx.doi.org/10.1083/jcb.201910131 Text en © 2020 Fernández de Castro et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Article
Fernández de Castro, Isabel
Tenorio, Raquel
Ortega-González, Paula
Knowlton, Jonathan J.
Zamora, Paula F.
Lee, Christopher H.
Fernández, José J.
Dermody, Terence S.
Risco, Cristina
A modified lysosomal organelle mediates nonlytic egress of reovirus
title A modified lysosomal organelle mediates nonlytic egress of reovirus
title_full A modified lysosomal organelle mediates nonlytic egress of reovirus
title_fullStr A modified lysosomal organelle mediates nonlytic egress of reovirus
title_full_unstemmed A modified lysosomal organelle mediates nonlytic egress of reovirus
title_short A modified lysosomal organelle mediates nonlytic egress of reovirus
title_sort modified lysosomal organelle mediates nonlytic egress of reovirus
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337502/
https://www.ncbi.nlm.nih.gov/pubmed/32356864
http://dx.doi.org/10.1083/jcb.201910131
work_keys_str_mv AT fernandezdecastroisabel amodifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT tenorioraquel amodifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT ortegagonzalezpaula amodifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT knowltonjonathanj amodifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT zamorapaulaf amodifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT leechristopherh amodifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT fernandezjosej amodifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT dermodyterences amodifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT riscocristina amodifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT fernandezdecastroisabel modifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT tenorioraquel modifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT ortegagonzalezpaula modifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT knowltonjonathanj modifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT zamorapaulaf modifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT leechristopherh modifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT fernandezjosej modifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT dermodyterences modifiedlysosomalorganellemediatesnonlyticegressofreovirus
AT riscocristina modifiedlysosomalorganellemediatesnonlyticegressofreovirus