Cargando…
Matrix factorization and transfer learning uncover regulatory biology across multiple single-cell ATAC-seq data sets
While the methods available for single-cell ATAC-seq analysis are well optimized for clustering cell types, the question of how to integrate multiple scATAC-seq data sets and/or sequencing modalities is still open. We present an analysis framework that enables such integration across scATAC-seq data...
Autores principales: | Erbe, Rossin, Kessler, Michael D, Favorov, Alexander V, Easwaran, Hariharan, Gaykalova, Daria A, Fertig, Elana J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337516/ https://www.ncbi.nlm.nih.gov/pubmed/32392348 http://dx.doi.org/10.1093/nar/gkaa349 |
Ejemplares similares
-
Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes
por: Lu, Zefu, et al.
Publicado: (2017) -
HMMRATAC: a Hidden Markov ModeleR for ATAC-seq
por: Tarbell, Evan D, et al.
Publicado: (2019) -
Classifying cells with Scasat, a single-cell ATAC-seq analysis tool
por: Baker, Syed Murtuza, et al.
Publicado: (2019) -
Screening for functional regulatory variants in open chromatin using GenIE-ATAC
por: Cooper, Sarah, et al.
Publicado: (2023) -
simATAC: a single-cell ATAC-seq simulation framework
por: Navidi, Zeinab, et al.
Publicado: (2021)