Cargando…
Self-reported COVID-19 symptoms on Twitter: an analysis and a research resource
OBJECTIVE: To mine Twitter and quantitatively analyze COVID-19 symptoms self-reported by users, compare symptom distributions across studies, and create a symptom lexicon for future research. MATERIALS AND METHODS: We retrieved tweets using COVID-19-related keywords, and performed semiautomatic filt...
Autores principales: | Sarker, Abeed, Lakamana, Sahithi, Hogg-Bremer, Whitney, Xie, Angel, Al-Garadi, Mohammed Ali, Yang, Yuan-Chi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337747/ https://www.ncbi.nlm.nih.gov/pubmed/32620975 http://dx.doi.org/10.1093/jamia/ocaa116 |
Ejemplares similares
-
The Early Detection of Fraudulent COVID-19 Products From Twitter Chatter: Data Set and Baseline Approach Using Anomaly Detection
por: Sarker, Abeed, et al.
Publicado: (2023) -
Natural language model for automatic identification of Intimate Partner Violence reports from Twitter
por: Al-Garadi, Mohammed Ali, et al.
Publicado: (2022) -
An aspect-level sentiment analysis dataset for therapies on Twitter
por: Guo, Yuting, et al.
Publicado: (2023) -
Developing an Automatic System for Classifying Chatter About Health Services on Twitter: Case Study for Medicaid
por: Yang, Yuan-Chi, et al.
Publicado: (2021) -
Methadone and suboxone(®) mentions on twitter: thematic and sentiment analysis
por: Chenworth, Megan, et al.
Publicado: (2021)