Cargando…

COVID-19 TestNorm: A tool to normalize COVID-19 testing names to LOINC codes

Large observational data networks that leverage routine clinical practice data in electronic health records (EHRs) are critical resources for research on coronavirus disease 2019 (COVID-19). Data normalization is a key challenge for the secondary use of EHRs for COVID-19 research across institutions...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Xiao, Li, Jianfu, Soysal, Ekin, Bian, Jiang, DuVall, Scott L, Hanchrow, Elizabeth, Liu, Hongfang, Lynch, Kristine E, Matheny, Michael, Natarajan, Karthik, Ohno-Machado, Lucila, Pakhomov, Serguei, Reeves, Ruth Madeleine, Sitapati, Amy M, Abhyankar, Swapna, Cullen, Theresa, Deckard, Jami, Jiang, Xiaoqian, Murphy, Robert, Xu, Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337837/
https://www.ncbi.nlm.nih.gov/pubmed/32569358
http://dx.doi.org/10.1093/jamia/ocaa145
Descripción
Sumario:Large observational data networks that leverage routine clinical practice data in electronic health records (EHRs) are critical resources for research on coronavirus disease 2019 (COVID-19). Data normalization is a key challenge for the secondary use of EHRs for COVID-19 research across institutions. In this study, we addressed the challenge of automating the normalization of COVID-19 diagnostic tests, which are critical data elements, but for which controlled terminology terms were published after clinical implementation. We developed a simple but effective rule-based tool called COVID-19 TestNorm to automatically normalize local COVID-19 testing names to standard LOINC (Logical Observation Identifiers Names and Codes) codes. COVID-19 TestNorm was developed and evaluated using 568 test names collected from 8 healthcare systems. Our results show that it could achieve an accuracy of 97.4% on an independent test set. COVID-19 TestNorm is available as an open-source package for developers and as an online Web application for end users (https://clamp.uth.edu/covid/loinc.php). We believe that it will be a useful tool to support secondary use of EHRs for research on COVID-19.