Cargando…

The hyperthermophilic partners Nanoarchaeum and Ignicoccus stabilize their tRNA T-loops via different but structurally equivalent modifications

The universal L-shaped tertiary structure of tRNAs is maintained with the help of nucleotide modifications within the D- and T-loops, and these modifications are most extensive within hyperthermophilic species. The obligate-commensal Nanoarchaeum equitans and its phylogenetically-distinct host Ignic...

Descripción completa

Detalles Bibliográficos
Autores principales: Rose, Simon, Auxilien, Sylvie, Havelund, Jesper F, Kirpekar, Finn, Huber, Harald, Grosjean, Henri, Douthwaite, Stephen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337903/
https://www.ncbi.nlm.nih.gov/pubmed/32459340
http://dx.doi.org/10.1093/nar/gkaa411
_version_ 1783554578060410880
author Rose, Simon
Auxilien, Sylvie
Havelund, Jesper F
Kirpekar, Finn
Huber, Harald
Grosjean, Henri
Douthwaite, Stephen
author_facet Rose, Simon
Auxilien, Sylvie
Havelund, Jesper F
Kirpekar, Finn
Huber, Harald
Grosjean, Henri
Douthwaite, Stephen
author_sort Rose, Simon
collection PubMed
description The universal L-shaped tertiary structure of tRNAs is maintained with the help of nucleotide modifications within the D- and T-loops, and these modifications are most extensive within hyperthermophilic species. The obligate-commensal Nanoarchaeum equitans and its phylogenetically-distinct host Ignicoccus hospitalis grow physically coupled under identical hyperthermic conditions. We report here two fundamentally different routes by which these archaea modify the key conserved nucleotide U54 within their tRNA T-loops. In N. equitans, this nucleotide is methylated by the S-adenosylmethionine-dependent enzyme NEQ053 to form m(5)U54, and a recombinant version of this enzyme maintains specificity for U54 in Escherichia coli. In N. equitans, m(5)U54 is subsequently thiolated to form m(5)s(2)U54. In contrast, I. hospitalis isomerizes U54 to pseudouridine prior to methylating its N1-position and thiolating the O4-position of the nucleobase to form the previously uncharacterized nucleotide m(1)s(4)Ψ. The methyl and thiol groups in m(1)s(4)Ψ and m(5)s(2)U are presented within the T-loop in a spatially identical manner that stabilizes the 3′-endo-anti conformation of nucleotide-54, facilitating stacking onto adjacent nucleotides and reverse-Hoogsteen pairing with nucleotide m(1)A58. Thus, two distinct structurally-equivalent solutions have evolved independently and convergently to maintain the tertiary fold of tRNAs under extreme hyperthermic conditions.
format Online
Article
Text
id pubmed-7337903
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-73379032020-07-13 The hyperthermophilic partners Nanoarchaeum and Ignicoccus stabilize their tRNA T-loops via different but structurally equivalent modifications Rose, Simon Auxilien, Sylvie Havelund, Jesper F Kirpekar, Finn Huber, Harald Grosjean, Henri Douthwaite, Stephen Nucleic Acids Res RNA and RNA-protein complexes The universal L-shaped tertiary structure of tRNAs is maintained with the help of nucleotide modifications within the D- and T-loops, and these modifications are most extensive within hyperthermophilic species. The obligate-commensal Nanoarchaeum equitans and its phylogenetically-distinct host Ignicoccus hospitalis grow physically coupled under identical hyperthermic conditions. We report here two fundamentally different routes by which these archaea modify the key conserved nucleotide U54 within their tRNA T-loops. In N. equitans, this nucleotide is methylated by the S-adenosylmethionine-dependent enzyme NEQ053 to form m(5)U54, and a recombinant version of this enzyme maintains specificity for U54 in Escherichia coli. In N. equitans, m(5)U54 is subsequently thiolated to form m(5)s(2)U54. In contrast, I. hospitalis isomerizes U54 to pseudouridine prior to methylating its N1-position and thiolating the O4-position of the nucleobase to form the previously uncharacterized nucleotide m(1)s(4)Ψ. The methyl and thiol groups in m(1)s(4)Ψ and m(5)s(2)U are presented within the T-loop in a spatially identical manner that stabilizes the 3′-endo-anti conformation of nucleotide-54, facilitating stacking onto adjacent nucleotides and reverse-Hoogsteen pairing with nucleotide m(1)A58. Thus, two distinct structurally-equivalent solutions have evolved independently and convergently to maintain the tertiary fold of tRNAs under extreme hyperthermic conditions. Oxford University Press 2020-07-09 2020-05-27 /pmc/articles/PMC7337903/ /pubmed/32459340 http://dx.doi.org/10.1093/nar/gkaa411 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle RNA and RNA-protein complexes
Rose, Simon
Auxilien, Sylvie
Havelund, Jesper F
Kirpekar, Finn
Huber, Harald
Grosjean, Henri
Douthwaite, Stephen
The hyperthermophilic partners Nanoarchaeum and Ignicoccus stabilize their tRNA T-loops via different but structurally equivalent modifications
title The hyperthermophilic partners Nanoarchaeum and Ignicoccus stabilize their tRNA T-loops via different but structurally equivalent modifications
title_full The hyperthermophilic partners Nanoarchaeum and Ignicoccus stabilize their tRNA T-loops via different but structurally equivalent modifications
title_fullStr The hyperthermophilic partners Nanoarchaeum and Ignicoccus stabilize their tRNA T-loops via different but structurally equivalent modifications
title_full_unstemmed The hyperthermophilic partners Nanoarchaeum and Ignicoccus stabilize their tRNA T-loops via different but structurally equivalent modifications
title_short The hyperthermophilic partners Nanoarchaeum and Ignicoccus stabilize their tRNA T-loops via different but structurally equivalent modifications
title_sort hyperthermophilic partners nanoarchaeum and ignicoccus stabilize their trna t-loops via different but structurally equivalent modifications
topic RNA and RNA-protein complexes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337903/
https://www.ncbi.nlm.nih.gov/pubmed/32459340
http://dx.doi.org/10.1093/nar/gkaa411
work_keys_str_mv AT rosesimon thehyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT auxiliensylvie thehyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT havelundjesperf thehyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT kirpekarfinn thehyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT huberharald thehyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT grosjeanhenri thehyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT douthwaitestephen thehyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT rosesimon hyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT auxiliensylvie hyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT havelundjesperf hyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT kirpekarfinn hyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT huberharald hyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT grosjeanhenri hyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications
AT douthwaitestephen hyperthermophilicpartnersnanoarchaeumandignicoccusstabilizetheirtrnatloopsviadifferentbutstructurallyequivalentmodifications