Cargando…

Dynamic topology of double-stranded telomeric DNA studied by single-molecule manipulation in vitro

The dynamic topological structure of telomeric DNA is closely related to its biological function; however, no such structural information on full-length telomeric DNA has been reported due to difficulties synthesizing long double-stranded telomeric DNA. Herein, we developed an EM-PCR and TA cloning-...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiaonong, Zhang, Yingqi, Zhang, Wenke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337930/
https://www.ncbi.nlm.nih.gov/pubmed/32496520
http://dx.doi.org/10.1093/nar/gkaa479
Descripción
Sumario:The dynamic topological structure of telomeric DNA is closely related to its biological function; however, no such structural information on full-length telomeric DNA has been reported due to difficulties synthesizing long double-stranded telomeric DNA. Herein, we developed an EM-PCR and TA cloning-based approach to synthesize long-chain double-stranded tandem repeats of telomeric DNA. Using mechanical manipulation assays based on single-molecule atomic force microscopy, we found that mechanical force can trigger the melting of double-stranded telomeric DNA and the formation of higher-order structures (G-quadruplexes or i-motifs). Our results show that only when both the G-strand and C-strand of double-stranded telomeric DNA form higher-order structures (G-quadruplexes or i-motifs) at the same time (e.g. in the presence of 100 mM KCl under pH 4.7), that the higher-order structure(s) can remain after the external force is removed. The presence of monovalent K(+), single-wall carbon nanotubes (SWCNTs), acidic conditions, or short G-rich fragments (∼30 nt) can shift the transition from dsDNA to higher-order structures. Our results provide a new way to regulate the topology of telomeric DNA.