Cargando…
5′ modifications to CRISPR–Cas9 gRNA can change the dynamics and size of R-loops and inhibit DNA cleavage
A key aim in exploiting CRISPR–Cas is gRNA engineering to introduce additional functionalities, ranging from individual nucleotide changes that increase efficiency of on-target binding to the inclusion of larger functional RNA aptamers or ribonucleoproteins (RNPs). Cas9–gRNA interactions are crucial...
Autores principales: | Mullally, Grace, van Aelst, Kara, Naqvi, Mohsin M, Diffin, Fiona M, Karvelis, Tautvydas, Gasiunas, Giedrius, Siksnys, Virginijus, Szczelkun, Mark D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337959/ https://www.ncbi.nlm.nih.gov/pubmed/32496535 http://dx.doi.org/10.1093/nar/gkaa477 |
Ejemplares similares
-
PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage
por: Karvelis, Tautvydas, et al.
Publicado: (2020) -
Tetrameric restriction enzymes: expansion to the GIY-YIG nuclease family
por: Gasiunas, Giedrius, et al.
Publicado: (2008) -
The Type ISP Restriction–Modification enzymes LlaBIII and LlaGI use a translocation–collision mechanism to cleave non-specific DNA distant from their recognition sites
por: Šišáková, Eva, et al.
Publicado: (2013) -
Target site cleavage by the monomeric restriction enzyme BcnI requires translocation to a random DNA sequence and a switch in enzyme orientation
por: Sasnauskas, Giedrius, et al.
Publicado: (2011) -
DNA cleavage by Type ISP Restriction–Modification enzymes is initially targeted to the 3′-5′ strand
por: van Aelst, Kara, et al.
Publicado: (2013)