Cargando…
A Graph-Based Keyphrase Extraction Model with Three-Way Decision
Keyphrase extraction has been a popular research topic in the field of natural language processing in recent years. But how to extract keyphrases precisely and effectively is still a challenge. The mainstream methods are supervised learning methods and graph-based methods. Generally, the effects of...
Autores principales: | Chen, Tianlei, Miao, Duoqian, Zhang, Yuebing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338155/ http://dx.doi.org/10.1007/978-3-030-52705-1_8 |
Ejemplares similares
-
Deep neural model with self-training for scientific keyphrase extraction
por: Zhu, Xun, et al.
Publicado: (2020) -
DAKE: Document-Level Attention for Keyphrase Extraction
por: Santosh, Tokala Yaswanth Sri Sai, et al.
Publicado: (2020) -
Multi-level Memory Network with CRFs for Keyphrase Extraction
por: Zhou, Tao, et al.
Publicado: (2020) -
Keyphrase Extraction as Sequence Labeling Using Contextualized Embeddings
por: Sahrawat, Dhruva, et al.
Publicado: (2020) -
Three-Way Decisions Community Detection Model Based on Weighted Graph Representation
por: Chen, Jie, et al.
Publicado: (2020)