Cargando…
Feature and Label Association Based on Granulation Entropy for Deep Neural Networks
Pooling layers help reduce redundancy and the number of parameters before building a multilayered neural network that performs the remaining processing operations. Usually, pooling operators in deep learning models use an explicit topological organization, which is not always possible to obtain on m...
Autores principales: | Bello, Marilyn, Nápoles, Gonzalo, Sánchez, Ricardo, Vanhoof, Koen, Bello, Rafael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338159/ http://dx.doi.org/10.1007/978-3-030-52705-1_17 |
Ejemplares similares
-
On the Behavior of Fuzzy Grey Cognitive Maps
por: Concepción, Leonardo, et al.
Publicado: (2020) -
Rough Net Approach for Community Detection Analysis in Complex Networks
por: Fuentes, Ivett, et al.
Publicado: (2020) -
Maximum entropy methods for extracting the learned features of deep neural networks
por: Finnegan, Alex, et al.
Publicado: (2017) -
Automatic Detection of Epilepsy Based on Entropy Feature Fusion and Convolutional Neural Network
por: Sun, Yongxin, et al.
Publicado: (2022) -
BBS Posts Time Series Analysis based on Sample Entropy and Deep Neural Networks
por: Chen, Jindong, et al.
Publicado: (2019)