Cargando…
Three-Way Decision for Handling Uncertainty in Machine Learning: A Narrative Review
In this work we introduce a framework, based on three-way decision (TWD) and the trisecting-acting-outcome model, to handle uncertainty in Machine Learning (ML). We distinguish between handling uncertainty affecting the input of ML models, when TWD is used to identify and properly take into account...
Autores principales: | Campagner, Andrea, Cabitza, Federico, Ciucci, Davide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338178/ http://dx.doi.org/10.1007/978-3-030-52705-1_10 |
Ejemplares similares
-
Ordinal labels in machine learning: a user-centered approach to improve data validity in medical settings
por: Seveso, Andrea, et al.
Publicado: (2020) -
External validation of Machine Learning models for COVID-19 detection based on Complete Blood Count
por: Campagner, Andrea, et al.
Publicado: (2021) -
Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility Study
por: Brinati, Davide, et al.
Publicado: (2020) -
A robust and parsimonious machine learning method to predict ICU admission of COVID-19 patients
por: Famiglini, Lorenzo, et al.
Publicado: (2022) -
Feature Reduction in Superset Learning Using Rough Sets and Evidence Theory
por: Campagner, Andrea, et al.
Publicado: (2020)